ECMWF Recent Developments and Plans

EWGLAM / SRNWP October 2016

Willem Deconinck

With thanks to many people at ECMWF!

willem.deconinck@ecmwf.int

© ECMWF November 7, 2016

ECMWF:

- An independent intergovernmental organisation
- Established in 1975
- 22 Member States
- 12 Co-operating States

ECMWF's purpose is to develop a capability for mediumrange weather forecasting and to provide such weather forecasts to the Member and Co-operating States

ECMWF is complementary to the National Meteorological Services and works with them in research, numerical weather predictions, supercomputing and training.

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Outline

Overview IFS upgrade Cy41r2 – 8 March 2016 What's next...

Growth of HPC sustained performance at ECMWF

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

HPC upgrade: Cray XC30 → Cray XC40

	Phase 1	(lvybridge) – 2014-2016	Phase 2	2 (Broadwell) – 2016-2020	
CPU	24 cores	(2 x 12 core) @ 2.7GHz	36 cores	(2 x 18 core) @ 2.1 GHz	
Memory/Node	64 Gb	(1866 MHz DDR3)	128Gb	(2400 MHz DDR4)	
Memory/Core	2.6 Gb		3.5Gb	(+35% cf Phase 1)	Overall
Parallel Nodes (per cluster)	3,400		3,513	(+3% cf Phase 1)	increase ~ 1.5
Total Cores (per cluster)	84,096		130,212	(+55% cf Phase 1)	
Tf sustained (both clusters)	200		320 (+60	0% cf Phase 1)	

ECMWF forecasting systems

HRES headline score: 500 hPa height anomaly correlation

ENS headline score: 850 hPa temperature CRPSS

Improvement in cloud cover skill – the last decade

See also Haiden et al (2015) ECMWF Newsletter 143

Evolution of skill of the HRES forecast at day 5, expressed as relative skill **CECMWF** compared to ERA-Interim (12 month running mean)

Forecast sensitivity (FSO) of major observing systems in ECMWF operations

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Outline

Overview IFS upgrade Cy41r2 – 8 March 2016 What's next...

Resolution upgrade: cubic grids

2N+1 gridpoints to N waves : T_L linear grid 4N+1 gridpoints to N waves : T_c cubic grid

Where T_L refers to linear grid and T_c to cubic grid, respectively

- Mathematically more correct in the presence of cubic non-linearities in the equations
- Less numerical filtering almost no numerical diffusion, no dealiasing
- Better mass conservation
- Less expensive than the equivalent linear grid (TC1023 cheaper than TL2047)

Resolution upgrade: octahedral reduced Gaussian grid

It is a reduced Gaussian grid with the same number of latitude circles (NDGL) than the standard Gaussian grid (\leftrightarrow Gaussian weights) but with a new rule to compute the number of points per latitude circle.

Number of points per latitude NLOEN(lat_N)=20 \rightarrow Poles NLOEN(lat_i)=NLOEN(lat_{i-1})+4

Re-think the spectral wave number truncation to gridpoint number ratio (Wedi 2014) The cubic-octahedral grid (TCo1279) at ECMWF (Wedi et al 2015) A new grid for the IFS (Malardel et al., ECMWF Newsletter 146)

Resolution upgrade: octahedral reduced Gaussian grid

N640 $T_L 1279$ (linear, ~16km) ~ 2.1 million grid points per level N1280 $T_C 1279$ (cubic, ~8km) ~ 8.5 million grid points per level O1280 $T_{Co} 1279$ (cubic, ~9km) ~ 6.6 million grid points per level (octahedral cubic reduced Gauss. grid)

Resolution upgrade: cubic grid property on kinetic energy spectra

ECCIVITY EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Resolution upgrade: cubic grid property on grid-point storm precipitation

T_{Co}1279 peak rainfall reductions

3 days accumulated large scale precip, south-east Asia

Resolution upgrade: EDA improvements

- Higher T_{Co}639 (16km) resolution
- More accurate analysis/forecasts
- More spread where it matters

41r1 T_L399 20150709 0900z 41r2 T_{Co}639 20150709 0900z

"Linfa, Chan-hom, and Nangka"

Resolution upgrade: cubic grid property on mass conservation

Improved semi-Lagrangian scheme

Instability with 3 iterations for semi-Lagrangian departure point in extreme situations (gravity waves above Himalayas, tropical cyclones);

Outline

Overview IFS upgrade Cy41r2 – 8 March 2016 What's next...

Coupling of Sea-Ice model LIM2

- An interactive sea-ice model LIM2 for ENS (the Louvain-la-Neuve Sea Ice Model - LIM2)
- Sea-ice cover evolves dynamically, 1/4 deg ORCA
- Previously:
 - it was persisted for 15 days;
 - Over the next 30 days of the forecasts it was relaxed towards the climatology of the previous 5 years.

Ocean surface currents at various resolutions

Eddy resolving

Eddy parameterising

Vertical layers in the ocean column for ORCA1_Z42 and ORCA025_Z75

Thermal coupling of ocean

Coupled ocean-atmosphere simulations are exposed to the problem of initial shock as the Atmosphere and the rest of earth surface is not yet in balance with the ocean.

Data assimilation 4D-VAR uses **OSTIA SST** OSTIA SST 1/20 degree 1/20 degree SST from OSTIA 1/4 degree SST from NEMO OSTIA 1/20 deg (5km) SST field 1m has details of the eddies not dynamic, ocean tendencies resolved by ocean models with uncertainties 8-laver in top 10m ORCA025 1/4 degree The **PARTIAL COUPLING** works well only OSTIA SST 1/20 degree is applied for 4in the short range as ocean eddies are **OSTIA SST** OSTIA SST + days and then relaxed to 0 gradually taperassumed stationary NEMO ASST down from day 4 to day 8 FULL COUPLING uses the dynamic ocean From day 8 onwards FULL COUPLING to advect eddies from day 0 NEMO SST. FULL-COUP. Day0 Dav4 Day8 **CECMWE** EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Coupled ocean vs uncoupled simulation

Tropical cyclone *Neoguri* with TCo1279 (HRES)

4-day forecast SSTs from the coupled forecast initialised at 0UTC on 6 July 2014 at the location of a buoy with approximate position 22°N, 128°E.

(Rodwell et al, ECMWF Technical Report 759, 2015)

Climatological AOD at 550 nm distribution

CAMS vs operational climatology (based on Tegen et al. 1997)

- Aerosol climatology computed using the CAMS-Interim reanalysis (Flemming et al. 2016)
- Updated spectral radiative properties, mass mixing ratio as input to radiation consistent with prognostic model, vertical distribution approximated by an exponential decay with scale height derived from the reanalysis for each aerosol type.
- Some highlights:
 - Larger Sea Salt radiative forcing (~1 W/m² more reflection at TOA over oceans)
 - Changes in biomass burning seasonal cycle (up to 20 W/m² difference in total SW absorption locally)
 - Changes in dust distribution, higher on Sahara and Taklamakan, lower on Indian Ocean and Australia
 - Anthropogenic emissions lower over Europe, higher over E Asia

Weather impact of surface processes

• Evaluating the 3-day forecast-range skill deterioration induced by the surface process being deactivated (366 forecasts 1st June 2015 to 1st June 2016)

New diagnostic: Lightning in the Ensemble Prediction System

Example of 15h EPS global forecasts (31 members) from 9 Aug 2015 at 00Z.

Satellite: Slant-path for radiative transfer calculations $(\rightarrow 43r1)$

Slant-path RT leads to better agreement with observations

(see Tech Memo 782)

Evaluating forecasts against observations

Towards process-level specification of uncertainties

Aim: Improve physical consistency of model uncertainty representation

- Embed stochasticity within IFS physics
- Local stochastic perturbations to parameters and variables with specified spatial and temporal correlations

- Flux perturbations at TOA and sfc that are consistent with tendency perturbation in atmospheric column
- Conservation of water
- No ad hoc tapering in BL and stratosphere
- Include multi-variate aspects of uncertainties
- Target uncertainties that matter
- Stochastic parameterisation converges to deterministic IFS physics in limit of vanishing variance

The distributions sampled by SPP

cloud and large-scale precipitation

Ollinaho et al (2016, QJ in press): Stochastically Perturbed Parametrisations scheme (**SPP**)

ECMWF TM784

SAC special topic paper on model uncertainty, to be published as TM785

CECMWF

Intercomparison of SPP and SPPT

Ensemble stdev of 0–3 h temperature tendencies (K[3 h]⁻¹)

Four-year plan: Projected HPC cost														
	2016			2017	201	018 2019		2020	2020		S	strategic	c target:	
EDA:	H resolution o/l	TCo639						TCo12	279	5		Global	5km,	\geq
	H resolution i/l	TL191	TCo191								SE	amless	analysis-	
	V resolution	L137									fo	rocasto	nsomblo	
	Coupling				orca02	25175								
	Ensemble size	M25		M50								in 20)25	
	Window length	2x12h	4x6h									1		
	Efficiency gains													
	Nodes:	1600	2560	5120	563	32	5632	2816	60					7
	Factor:	1	1.6	2.0	1.	1	1.0	5.0)			The HRES		
	Accum. factor:	1	1.6	3.2	3.	5	3.5	17.	6			T		
							2	016	2	017	2018	2019	2020	
					on	TCo	639						TCo1279	
					on	L9	1				L137			
				Coupling		orca10	00142	orca025175						
				Forecast r	ange	d1	0		d	15				
					insemble size		51							
			ENS/legA:	Reforecast ensemble size		M1	1					M15		
				Efficiency	gains									
				Nodes:		153	30	1683	25	525	3787	4355	21774	
				Factor:		1		1.1	1	.5	1.5	1.2	5.0	
				Accum. fa	actor:	1		1.1	1	.7	2.5	2.8	14.2	

CECMWF

Challenges "tomorrow"...

ECMWF Scalability Programme

Thank you for your attention

ECMWF Recent Developments and Plans

EWGLAM / SRNWP October 2016

Willem Deconinck

With thanks to many people at ECMWF!

willem.deconinck@ecmwf.int

© ECMWF November 7, 2016