

SRNWP at FMI

Ekaterina Kurzeneva, Laura Rontu, Margaret Choulga (RSHU), Kalle Eerola, Homa Kheyrollah Pour (UW), Maxime Quenon (ENSG), Markku Kangas, Carl Fortelius

Operational

	SRNWP SUITES	HIRLAM v7.4 "RCR"	HARMONIE Cy38h12 "AROME"
	Mesh size	7.5 km	2.5 km
	Number of grid points	1036 * 816	720 * 800
	Number of levels	65	65
	Initial times	00/06/12/18 UTC	00/03/06/09/12/15/18/21 UTC
	Range	+54 h	+54 h
	Upper air analysis	4D-var	3D-var
	Surface analysis	Optimal interpolation	Optimal interpolation
	Nestor forecast	ECMWF IFS, hh - 6 h	ECMWF IFS, hh – 6-9 h
	LBC frequency	3 h	3 h

HIRLAM v74 / HARMONIE aro38h12

DOWNSTREAM & RELATED APPLICATIONS

SILAM	Particle dispersion,	Nuclear emergency preparedness
dispersion and	jointly with the Radiation and	Forest fires
chemical	Nuclear Safety Authority	Volcanic ash
transp. model	STUK	Long-range pollen transport
-POLLEN -FAS -DMAT	Chemical transport modelling	SO_2 , NO, O_3 , CO, PM_{10} , $PM_{2.5}$, concentrations and deposition
HILATAR	Eulerian regional transport	SO_x , NO_x , NH_x , toxic metals, dust
B 1 1 1		

COMPUTING RESOURCES

Cray XC30: 2 identical clusters, each with 3420 cores, 10.7 TB memory Peak performance ca 70 Tflop/s for each cluster, ca 140 Tflop/s total

	Intelligent traffic applications		
Marine models	Baltic wave forecasts	WAM	
	Sea level at Finnish coast	OAAS, WETEHINEN 2D	
	Baltic ice	HELMI	
	Baltic water circulation	HBM	
Hydrological models	Managed by Finland's environmental administration SYKE		
LAPS	Hourly analyses of surface and upper air variables		

Snow observations from different sources from a DA perspective

- **Objective:** to evaluate data on Snow Extent (SE) and Snow Water Equivalent (SWE) from remote-sensing observations and in-situ observations comparing them between each other and with HARMONIE snow analyses.
- **Data** (Oct. 2015 May, 2916):

METOP vs MSG:

- 1) SE satellite product METOP (polar orbiting, visual band)
- 2) SE satellite product MSG (geostationary, visual band)
- 3) Snow depth in-situ observations from SYNOP stations
- 4) HARMONIE analyses: SWE and snow fraction
- 5) + SWE satellite product GLOBSNOW (microwave band)

HARMONIE vs METOP and MSG:

New structure functions for lake water surface temperature (LWST) from observations

- **Objective:** new structure functions of LWST dependent on the distance and on the difference in lake depth in the frame of Gandin (1965)
- **Observations**: in-situ for 27 Finnish lakes by the Finnish Environmental Institute (SYKE). From MODIS for 71 pixels in Fennoscandia.
- June-July-August 2010-2014

METOP has more data in the North, but MSG has fewer pixels with undefined values. With better spatial resolution, METOP brings much information in spring. Use both MSG and METOP for DA.

Snow classification METOP vs. MSG, Jan 14: METEOSAT model

		Snow	No snow	Undefined
METOP model	Snow	Red	White	Pink
	No snow	Brown	Yellow	Cyan
	Undefined	Blue	Orange	Green

Good agreement where data are available. HARMONIE analyses has artifacts.

Time series of Proportion Correct (yellow), kappa (blue) and Heidke Skill Score (mauve) coefficients for MSG vs HARMONIE

SYNOP vs METOP and MSG:

Good agreement where data are available. However both METOP and MSG overestimate snow. Also, SYNOP data contain representativeness errors.

Contingency table METOP vs. MSG (METEOSAT) for January, 14. Number of pixels with snow (S), no snow (NS) and undefined (ND)

####		ANALYSE	METEOSAT	####
####		S	NS	ND
ANALYSE	S	2869.00	295.00	2729.00
METOP	NS	374.00	117572.00	5409.00
####	ND	18891.00	51453.00	251749.00

Conclusions:

- Usage of L_{H} =800 km allows to introduce more observations, for lakes located far from their neighbours
- Usage of the depth difference dependency improves the analysis prevailing the influence of observations from shallow lakes on deep lakes, and vice versa