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The seamless vision for forecasting

“‘We are entering a new era in technological
innovation and in use and integration of
different sources of information for the
wellbeing of society”

Quality of forecast

Synoptic-scale NWP model, EPS

and Model Output Statistics
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The quality of weather forecasts defined as a function of lead time for different forecasting methods.
The figure is highly schematic and the quality of forecast is a qualitative accuracy of the different I |
performance. This figure is based on a previous one originally created by Browning (1980). /;



SAPHIR system design
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Expectation: output

» Seamless forecast 0-72h

» Resolution: 1km x 1km horizontal, 100m vertical up to 4km

» Update cycle: 5min — 1h

» Deterministic and probabilistic

> Application oriented: T, Q, U, V, RR (amount and type), Tam,
RH2m, V1om/100m, Tsurf, cloudiness, global radiation, visibility,

snowlines, wind gust, icing potential
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Challenges

Nowcasting ” Data asimilation

Nowcasting ” RUC

Deterministic
Blending

Ensemble Ensemble Nowcasting ” Convection EPS

Blending

Convetcion EPS ” calibrated EPS
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System design

SAPHEIR Seamless probabilistic Analysis and Prediction in very High Resolution

probabilistic:
most reliable
forecast

nowcast spatial resolution: 1km x 1km

temporal resolution: 5min - 1h

deterministic:
most accurate

deterministic forecast

nowcast spatial resolution: 1km x 1km

temporal resolution: 5min - 1h



System design

SAPHIR Seamless probabilistic Analysis and Prediction in very High Resolution
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Introduction of Optical Flow and cKDTree in INCA Henedikigica
benedikt.bica@zamg.ac.at

Optical Flow (OF) equation (methodology Farneback': Dense OF working on all grid points)
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Introduction of Optical Flow and cKDTree in INCA

Benedikt Bica
benedikt.bica@zamg.ac.at

Analysis D2 23.04.2018 12:30 UTC (-15min)

Taking |Min=0.00, Max=23.31, y=0.06, 0=0.49. A=1000m, Obs = 951.
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System design

SAPHIR Seamless probabilistic Analysis and Prediction in very High Resolution




AROME-Nowcasting Florian Meier

florian.meier@zameg.ac.at
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Possible improvements of the blending methodology

The blending’s weight are for a given lead-time =2 w(lt).

Winca
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Possible improvements of the blending m

* The blending’s weight are for a given lead-time = w(lt).

* However, the dataset used to compute the optimal bler
[field] x 24 x 31 [time of the month]) = (It,x,y,t).

Weight of INCA []
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Flow dependency

w(lt,t) where t is the time of the month
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Flow and location dependence on the weights

The main goal is to have local information but in a flow dependent way so it account for
the different quality depending on the weather performance.
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Deterministic blending: new strategy 2D-VAR “J“
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Creation of an ensemble of analysis
lukas.tuechler@zamg.ac.at

uncertainties in radar precipitation estimation
- ensemble precipitation estimation

REAL algorithm (Germann et al., 2009):
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System design

Seamless probabilistic Analysis and Prediction in very High Resolution

ensemble blend

Ensemble

nowcast




Ensemble nowcasting

N A non-stationary stochastic ensemble generator for

radar rainfall fields based on the short-space Fourier
transform (Nerini et al, 2017).

201607121200

49°N [l . ----- i B — Stochastic noise is added to the
5> 4 INCA field using the local

% correlation information.

a o

Physical processes such as the | ‘%
diurnal cycle of precipitation is
introduced as an external forcing

to the ensemble generator.
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Ensemble nowcasting (eyeball verification)

[ An ensemble of realistic rainfall fields. ]

2016/07/12 12:00 (10:00 initialization + 2 h lead-time)
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System design

Seamless probabilistic Analysis and Prediction in very High Resolution

mbleblending ensemble blending

.......




C-LAEF: Convection permitting — Limited Area Ens. Forecasting

2.5km / 90 levels; 16 members
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Probabilistic blending (INCA + AROME — EPS)

INCA ( Oh Lead-Time)

ml*'E . 2E 14°E - o
AROME (16 Members)

\
INCA and 16 members of the AROME-

EPS are probabilistically blended in sub-
domains of 100x100 such as the grey
box overploted in the image.
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Weight computation

The rainfall field is divided in boxes of 100 x 100 pixels for introducing the spatial

dependence on the location. At each of these boxes a different weight is used which
depends on three factors:

* A lead-time function based on the operational weight in the INCA nowcasting system.

* A nudging term of the weight towards/against the ensemble prediction system when
there is agreement among the ensemble members (small uncertainty).

A portion based on the quality of the ensemble member in comparison with the
latest observations and the evolution of the variances of both sources (and
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Probabilistic blending (INCA + AROME — EPS)

Weight blending for INCA
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correlations in order to reconstruct a rainfall field
with self-similarity information from both f/e/ds

0
B
*
158
B0
180

AROME

Weight AROME. 0.9 1o Weight AROME: 0.7 . Weight AROME: 0.5 1o, Welght AROME: 0.3 - We—n L AROME: 0.1

\
INCA and 16 members of the AROME-
EPS are probabilistically blended in sub-

domains of 100x100 such as the grey 7 zz:A: MHG
box overploted in the image. Metearologie und

J




o]
oo

An ensemble of realistic rainfall fields.
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An ensemble of realistic rainfall fields.

Effect of the resampling of the distributions in the 4t h lead-time.
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System design

SAPHIR Seamless probabilistic Analysis and Prediction in very High Resolution




Standarized Anomaly Model Output Statistics (SAMOS) MagusRabaraie

Markus.Dabernig@zamg.ac.at

11.10.2018
Folie 31
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Standarized Anomaly Model Output Statistics (SAMOS)

Temperature Precipitation Wind
""""""""""""""" Averaged over all stations:
o R 1| — -+ Improvements at all variables between
_____________________________ 20 and 70 %
@ é ¢ Averaged over all grid points:
7 A s i | s B et | B » + Only precipitation could not be improved
S s I B O T | L, °  atall lead times
""""""""""""""" —> Difference between all grid points and
° T Rlaere 1°  stations due to different height distribution
INCA ECMWEF SAMOS
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The schaake Shuffle for introducing calibrated statistics 4

1. The mean and standard deviation obtained at each pixel by SAMOS (calibration) it is
introduced in the empirical distribution from C-LAEF by a weight as a function of the
lead-time.

2. From these modified distribution, 16 new rainfall values are obtained at each pixel.

3. The spatial correlation is reproduced by the Schaake Shuffle technique:

Location1l Location2  Location3 Location1l Location2  Location3
0.0 0.3 0.0 0.0 0.3 0.0
0.1 0.5 0.0 5.0 0.5 0.0
1.4 2.1 0.0 1.4 11. 0.1
5.0 11. 0.1 0.1 2.1 0.0
Ens c-LAEF  Location1l Location2  Location3 Location 1 Locjin 2 Location3
1 0.0 0.1 0.1 0.0 (1) 0.5(1) 0.0 (2)
2 7.5 1.4 0.0 0.% (4) 0.3 (2) 0.0 (4)
3 2.1 919 0.3 2.4 (3) 2.8 (4) 0.0 (1)
4 0.5 7.8 0.0 3.8 (2) 91 (3) 0.2 (3)

l Spatial structure from C-LAEF ] //; ZAMG




The schaake Shuffle for introducing calibrated statistics ‘*J

e The animation shows a smooth transition from C-LAEF to the calibrated mean

Ensemble mean (It: 12 h)

AROME-EPS Blended
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The schaake Shuffle for introducing calibrated statistics

* And the spatial structure can be observed in the different ensembles members:

Original AROME-EPS (It: 21 h) Blended fields (It: 21 h)
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Conclusions & next plan

v' Seamless system SAPHIR has been designed, and its
basic components are available.

v" There are still a lot of challenges in all aspect of related
science and technology.

v Other R&D activities have been started or in plan, e.g.
SAPHIR at 100m resolution; extension to medium range,

etc.
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Challenges of the current methodologies

The probability-based blending (2) avoids the losing of intense precipitation values in the
blended forecast but shows also the reduction of variance, larger skillful scales and,
furthermore, the obtained field is not a realistic precipitation field.
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Blending: State of the art

The current state of the art for creating a seamless prediction for high impact
weather, storm prediction and so on for very short-term is still adding:

1. Linearly both fields (Golding, 1998),
0 Lead-time > 6 h
Wineq = 3 (6 — leadtime) »

Lead-time <6 h

6—1

Weight INCA []

o
P

WaroME = 1 — Wincq

0.0 1

o 1 5 6

2. Linearly the probabilities of occurrence (Kober et al., 2012).

2 3 4
Lead-time [h]

3. Cascades from a scale decomposition of the reflectivity fields (Bowler et al.,
2006) from both sources the Lagrangian extrapolation and the NWP output
(e.g. STEPS, Alan Seeds).

Scale decomposition of the original image
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Current operational setting

* The INCA (Integrated Nowcasting through Comprehensive Analysis) system provides analysis and
nowcasting fields of temperature, humidity, wind, precipitation amount, precipitation type,
cloudiness, and global radiation. The nowcasting part employs classical correlation-based motion
vectors derived from previous consecutive analyses. In the case of precipitation the nowcast includes
an intensity-dependent elevation effect. After 2—6 h of forecast time the nowcast is merged into an
NWP forecast provided by a limited-area model, using a predefined temporal weighting function:

1.0 -
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Methodology to compute the ,,optimal” weights

* In the literature (for example; Kalnay 2003), it can be found the weights for the optimal interpolation
(merging) of two different sources. The simple example for a given measurement, assuming no bias
and no correlation between the sources of information, is:

2 2
_ OAROME _ OINCA
WINCA = 2 1 o2 WAROME — 52 1 o2
AROME INCA AROME INCA

* However, we can plot the errors as a function of the weights for the two different forecasts:

Variance Bias Mean Square Error (*)
1.0 1.0 1.0

0.8 0.8 0.8
Q Q &
z z z
E‘ 0.6 E 0.6 E 0.6
o (@] (@)
[ [~ [«
< < <
:g 0.4 % 0.4 % 0.4
= = £
= = =

0.2 0.2 0.2

0.0 0.0 T 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0:4 0.6 ; . . 0.0 0.2 0.4 0.6 0.8 1.0
Weight INCA Weight INCA Weight INCA

~2ZAMG

Zentrolonstalt fiir
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Methodology to compute the ,, optimal” weights

In the literature (for example; Kalnay 2003), it can be found the weights for the optimal interpolation

(merging) of two different sources. The simple example for a given measurement, assuming no bias
and no correlation between the sources of information, is:

2 2
_ OAROME _ OINCA
WINCA = 2 1 o2 WAROME — 52 1 o2
AROME INCA AROME INCA

However, we can plot the errors as a function of the weights for the two different forecasts:

Variance |, vara — cov(I, A) — cov(A, O) + cov(I,0) + E[A]* — E[I|E[A] + E[I|E[O] — E[A]E|O]
1.0 r= vary +vara —2Couv(I, A) + E[I]? + E[A]? — 2E[I|E[A]

~ E[A? — E[[|E[A] + E[I[E[O] — E[AJE[O]
= El? + E[A]2 — 2E[I|E[A

) — cov 0.6 4

vary + var4 — 2cov(A, I)

0.4 0.44

Weight AROME-RL
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0 0.0 : : 0.0 E[0-1|E[A%] - E[O - AJE[I - A]
; 0y, =

o cov(A, O) * cov(I, A) — cov(I,O) xvary] %2 \,-,?é? " IS'SA ba 4.0 E[I?2|E[A?] — E[I - A]?
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Some information from the ,,optimal“ weights

* The whole month data from AROME-RUC, INCA and observations (obtained from INCA Analysis) is
used to compute the weights as a function of the lead-time. Only the weights that optimizes the MSE
are shown (taking into account correlation between sources, possible bias and so on):

e Weight INCA
W. AROME —RUC
0.8 = QOperational
= Optimal
E 0.6 - —  Opt. (No bias)
= Opt. (No cov.)
ko
; 0.4 1
0.2 A
0.0 A

Lead-time [h]



Results from the ,,optima

I(l

weights

The results are obtained for every hour of the whole moth of July 2016 (a total of 744 hours) for
each lead-time (6 hours of maximum lead-time). The MSE Skill Score(*) is computed as the

verification index:

(*)MSE - SS' =

MSE - SS
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Is this improvement “real“?

The MSE has a dependence with the variance of the resulting blended field. Consequently, a
reduction of the variance would result in an improvement of the scores.

* MSE(fg) =Var(fzg — 0) =(Var(fz))| HVar(0)}-|\2Cov(fz, 0)

20

B var(OBS)
s var(Blend)
[ Cov(Blend,OBS)
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WelghtINCA The empirical probability distribution of rainfah

values of both INCA (radar extrapolation) and
AROME-RUC (NWP) is compared to the epdf of
the blended forecast showing the lessening of
\the intense rainfall and the reduction of variance.




Results from the ,,optima

I(l

weights

The results are obtained for every hour of the whole moth of July 2016 (a total of 744 hours) for
each lead-time (6 hours of maximum lead-time). The Normalized MSE Skill Score is computed as the
verification index:

Norm. MSE - SS
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Correlation []

Flow and location dependence on the weights

The main goal is to have local information but in a flow dependent way so it account for
the different quality depending on the weather performance.
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Brier []

Verification and comparison with previous methodologies -

The probabilistic verification is carried out for each hour ...
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Day of July 2016

g

The threshold of 0.1 mm has been selected because the previous methodology for blending
shows even worse results for larger rainfall amounts. The introduction of observation improves
the performance of AROME-EPS during the different lead-times of the 30 hours forecast horizon.
The blending methodology not always improve the forecast (grey circle highlight an example).
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Resampling and Matching Method

To avoid losing the heavy rainfall values and also the reduction of variance caused by the
intensity-based blending methods, a matching method is applied to each of the
subdomains. This method can keep the chosen empirical distribution of rainfall values.

However, a method to blend both empirical distribution has to be developed as well.
Taking into account the non-Gaussian shape of the distribution, a resampling method

from the sorted distribution of both sources of rainfall values (INCA and AROME-EPS
member) is applied.
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Verification and comparison with previous methodologies -

... and then the results are pooled for the whole month of July
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Brier Skill Score [Ref: AROME-EPS]
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To remove the episode to episode variability, the Brier Skill Score using AROME-EPS as a reference
has been computed and pooled for the whole month. The results shows the improvement of both
blending methodologies and the benefits of the new one even for the first lead-times against
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Blending: State of the art

The current state of the art for creating a seamless prediction for high impact
weather, storm prediction and so on for very short-term is still adding:

1. Linearly both fields (Golding, 1998), T
W, =exp| Ln C,[(dt -1)/5] ;
) C.'\ 0.4 9
W, =C, + CulCr -G) o | | | | |
CA o 1 2 3 . . 1

2. Probabilities of occurrence (Kober et al., 2012) depending on the synoptic forcing
(Kober et al., 2014)

3. Cascades from a scale decomposition of the reflectivity fields (Bowler et al.,
2006) from both sources the Lagrangian extrapolation and the NWP output
(e.g. STEPS, Alan Seeds).

Scale decomposition of the original image
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Challenges of the current methodologies

Methodologies 1 and 3 are Blending in the intensity space. They involve the following
challenges which need to be tackled:

Inca 1h (03 h Lead Tlme) _ _ AROME RUC (03 h Lead Tlme)

49°N | L ..

47°N

7
- 100.0
40.0
The thunderstom (>35 mm/h) modelled by the 15.0
NWP is smoothed (~ 18 mm/h) in the blended 80 |
forecast due to the lack of precipitation in the 4.0
radar-based extrapolation. L0
0.1




Challenges of the current methodologies

So, the intensity-based blending (1 and 3) reduces the heavy rainfall, the variance of the
field and the spatial resolution:

e INCA
1.0 - = = AROME-RUC
=== |NCA II I === BLENDED
09| == AROME-RUC
|| == BLENDED ini
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values of both INCA (radar extrapolation) and
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AROME-RUC (NWP) is compared to the epdf of

fThe Fractions Skill Score (FSS) measures at which the I_olended fqrecast showing the Iessen_ing of
spatial scales the forecast resembles the \ the intense rainfall and also the reduction of
observations. The skillful scale represents the
small window size for which the forecast is useful, |—|
giving information about the resolution of the /;ZAMG
fesit- ) Wahampingls ad




Challenges of the current methodologies

Besides, recent studies about the performance of NWP flood forecasts (Cloke et al. 2017)
and Nowcasts (Berenguer et al, 2016) have shown that both forecast qualities vary
locally. The MSE skill score* of AROME-RUC (NWP with data assimilation) versus the INCA
(extrapolation radar-based nowcasting) for different lead-times is computed to
demonstrate that local dependence of the forecasting systems.

1.000

0.833

oo 5-6h lead-time
0.833 : g —

0.667 49°N | 0.667

49°N

0.500 0.500

- 0.333 - 0.333
- 0.167 - 0.167
-{ 0.000 - 0.000

- —0.167 - —0.167

-0.333 A7 °N |rstareeeress

[MSE Skill Score]
[MSE skill Score]

—0.333

—0.500 —0.500

—-0.667 —0.667

-0.833 —-0.833

10°E 12°E 14°E 16°E

-1.000 —1.000

(*) 1 — MS5Einca . MSE;noa < MSEsroMmE

" MSEaromMmE

MSEsroME _ .
NohME — 1 : MSEinca 2 MSEArROME




Creation of an ensemble of analysis
lukas.tuechler@zamg.ac.at

uncertainties in radar precipitation estimation
- ensemble precipitation estimation

REAL algorithm (Germann et al., 2009):
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