

Highlight of recent progress in HIRLAM upper-air data assimilation

Roger Randriamampianina with contribution from HIRLAM colleagues

EWGLAM, 2018, Salzburg, Austria

- Operational upper air data assimilation (UA-DA) systems in HIRLAM
- Algorithmic development
- Improving the use of observations
- Concluding remarks and further plan

Operational upper air data assimilation (UA-DA) systems

- Assimilation scheme: 3D-VAR;
- Cycling Strategy: 3 hourly;
- Conventional observations: SYNOP, SHIP, BUOY, AMDAR, AIREP, ACARS, ModeS EHS, Pilots, TEMP;
- Satellite radiances: AMSU-A, AMSU-B/MHS, ATMS, IASI;
- Satellite retrievals: Scatterometer, GNSS ZTD, GPS RO, AMV;
- Radar observations: Reflectivity;
- Bias correction scheme: Variational (VarBC).

Hirlam

Field Alignment (FA) & Variational Constraint (VC)

Carlos Geijo

Assimilation of Doppler Wind Radar Data in HARMONIE

- Verification of forecasted radial wind using the own radar data:
- Error \equiv (Fcst Radar)² >^{1/2}_{PPI=0.5} +< (Fcst Radar)² >^{1/2}_{PPI=1.4}
- Results averaged over more than 150 cases:

Testing the FA in HARMONIE system

Property of the Green Function

Norweaian Meteorological Norwegian Meteorologiear Institute

9

17 21

66

FA and VC Carlos Geijo

3h-DA cycles with conventional obs (~3*10³ obs/cycle) . No surface analysis. **Control**: 3D-VAR (Red line) **Experiments**: (Green (w=1) and blue (w=10) lines)3D-VAR with no statbal (LUNIVARIATE=.T.) and VC for balancing. Verification using the standard HIRLAM tool.

Ensemble nowcasting Xiaohua Yang

Operational COMEPS@DMI

24 +1 members, Harmonie-arome@2.5 km 1200x1080x65 gridmesh Time-lagged EDA/EPS with

- hourly 3DVAR (control)
- 4 perturbed members each hour, 57h forecast
- Perturbation (EDA)
 - observation, multi-physics, surface, SLAF

COMEPS-nowcasting (prototype)

Basics: Ensemble Harmonie-arome @750m + radar extrapolation, 7 to 13 NWP members,, 800x720x65 10 min update with time-lagged EDA/EPS

- 3DVAR every 10 min, 9 h forecast
- COMEPS@2.5 km as LBC

Upper air DA – Ensemble nowcasting – Xiaohua Yang

Motivation: DMI wishes to develop a forecast capability to warn rapidly developing convection which often is characterised by a very short life cycle (1-3 h), very small scales (few km).

Approach: an ensemble RUC with NWP-based sub-km resolution nowcasting + radar extrapolation (in first hour)

- Model: sub-km Harmonie-arome with capability for small scale convection; possibly + nudging
- Assimilation: variational approach with 3DVAR/4DVAR
- Ensemble: a time lagged EDA with RUC on overlapping windows

Extension of DMI-COMEPS from hourly, 2.5 km system toward sub-hourly and sub-km

Also use of more observations from crowd can be considered

Assimilation window **2h**, data between **-1** and **1 h** Background from **2h** forecast of previous cycle

Danish Meteorological Institute

Xiaohua Yang, EUMETNET Workshop on Ensemble-Nowcasting, 16-18 May 2018

Upper air DA – Ensemble nowcasting – Xiaohua Yang

4D-Var development

Nils Gustafsson, Jan Barkmeijer, Magnus Lindskog, Jelena Bojarova

HARMONIE Multi-incremental 4D-Var – some technical improvements

- Multi-incremental 4DVAR with multiple resolutions (different resolutions in different outer loops)
- 2D parallelization
- Treat the humidity in spectral space
- Increment for TL model = 0 at first iteration
- Handling of VARBC coefficients in control vector file
- Problem with skin temperature for AMSU assimilation in second outer loop
 - "fixed" by using model skin temperature. Using skin temperature and emissivity as "slack variables" during minimization could be considered.
- "EZONE" has to be increased in case of very coarse resolution outer loops
- Tested with shorter period runs with "operational observations"

4D-Var development

Nils Gustafsson, Jan Barkmeijer, Magnus Lindskog, Jelena Bojarova

HARMONIE Multi-incremental 4D-Var – affordable operationally

Outer 4dVar loops with different horizontal resolution in different outer loops

- fg Control vector in spectral space –
- padded with zeroes when resolution is increased

4dvlbsat : 30 iter 3 dx + 30 iter 3 dx

4dvlbsatez : 20 iter 6 dx (needed to extend EZONE to 25) + 10 iter 3 dx

Both with satellite and conv. data.

Norwegian Meteorological Norwegian Meteorological

LETKF Pau Escriba & Jelena Bojarova

- LETKF is quite mature after several tunings but still not finished
- In a 8 day (short) verification period the LETKF performance is comparable to 3DVAR, even better in some parameters when assimilating only conventional observations
- Many short-period testing have been done
- More verification with longer periods is needed

More about the tests and the results can be found on our last working week page

Hybrid EnVar implementation and Brand Brand: A perturbation technique through B Jelena Bojarova

20120619_09 control q 47	20120619_09 mean q 47					Hybrid EnVar (BRAND "after" Small spread)		Hybrid EnVar (BRAND "after" Large spread)		20120613 00 UTC
					#obs	"o-b"	"o-a"	"o-b"	"o-a"	_
		SYNOP	LAND	Z	87	18.03	4.61	15.53	2.23	
				Z	297	47.98	12.44	53.56	6.39	
			SHIP	Z	16	2.49	1.22	7.06	0.82	
First Guess HybridEnVar	Mean BRAND "after" (+03h)			U	10	8.84	6.16	8.25	3.82	
0.0015 0.0030 0.0045 0.0060 0.0075 0.0090 0.0105 0.0120	0.0015 0.0030 0.0045 0.0060 0.0075 0.0090 0.0105 0.0120			Z	28	10.37	6.31	11.27	2.95	
				U	16	13.08	9.11	13.79	4.59	
incr fc2012061912+000grib q_47	20120619_09 variance q 47	AIREP	AMDAR	U	124	37.86	11.99	44.28	4.28	
				т	62	10.36	6.07	13.08	2.32	
		DRIBU	BU Z 1 0.01 0.02 0.07		0.07	0.01				
		TEMP		U	2362	960.48	669.28	1098.07	629.02	
				т	613	618.36	485.95	648.85	463.03	
				Q	345	366.04	126.73	478.10	114.29	
		J		Jo	3961	2093.96	1339.93	2391.96	1233.79	
Analysis Increment				Jb			120.42		82.31	
	STD BRAND "after" (+03h)			Je			60.85		84.85	
-0.004 -0.003 -0.002 -0.001 0.000 0.001 0.002 0.003	0.0000000255000300007550010000012550013000017550020000225									

EnVar: implementation following *Gustafsson and Bojarova (2014)* is done and testing and further development of the scheme is ongoing.

Brand: Implementation is finished. Tuning of the technique is needed.

Using cloud data in nowcasting initialisation Erik Gregow

- 7-days: 29 Aug- 4 Sep 2018
- MNCW_preop rapid refresh without MSG cloud initialisation
- MNCW_preop_voima rapid refresh with MSG cloud initialisation
- –> Good impact on cloudiness, but further tuning is needed for the other verified parameters.

Variational bias correction for aircraft data Magnus Lindskog

- Test with the off-set only;
- Seems to work well and do the bias corr.;
- Promising positive impact;
- Issue with growing file size;

Use of emissivity Atlas in microwave radiance assimilation Sigurdur Thorsteinsson & Roger Randriamampianina

Very promising results!

Blue – use of emissivity over sea only;
Green – use of emissivity over sea and land;
Red – Not using the emissivity atlas.

Many thanks to Philippe Chambon & Florian Suzat (Météo France)

Norwegian Meteorological Norwegian Meteorological

More on the use of observations

- Implementation of GNSS slant delay assimilation with very promising impact.
- MET Norway is involved in the CAL/VAL project with the Aeolus HLOS wind data.
 Our newest system 43h2 is ready for this challenge.
- Máté Mile is starting PhD with, among other tasks, special focus to effective resolution of observations (accounting for the real footprint of observations) in DA.
- We think it is very important to make all verified ("assimilable") observations available in the operational systems. Specific resource is dedicated to this task at different centres.
- We are involved in Copernicus reanalysis for both European and Arctic regions.
 allow short development works like improving the observation pre-processing, optimisation of the DA system, improvement of blacklisting procedure.

Concluding remarks and outlook

- Continue the local implementation of more observations ...;
- Continue exploring 1-h DA update (overlapping windows) and Rapid refresh;
- Working with initialisation schemes: LHN, use of variational constraint, IAU;
- Continue developing the 4D-VAR, LETKF and hybrid EnVar schemes;
- Further improve the treatment of radar data;

-

- Improve the observations pre-processing: Bator for all observations and at the same time develop COPE to handle all observations;
- Diagnose B computation by checking Hirlam and MF/Aladin ways of computation;
- Better accounting of large scale information in initialisation and data assimilation;

Thank you

