Developments in the Met Office hourly 4D-Var system

Bruce Macpherson

UKV model cycling and forecasts

- □ 24 hourly assimilation cycles per day
 - Observation cut-off 45min (but 80min at 11 & 23 UTC for sondes)
 - Linear PF model at 4.5km resolution for stability and cost
- □ Forecasts:
 - \rightarrow t+12 every hour,
 - \rightarrow t+54 every 3 hours,
 - → t+120 from DT 03, 15 UTC

Lateral boundaries from 00, 06, 12, 18 UTC runs of Global model

- □ 3-hourly \rightarrow hourly cycles
- □ 75 min \rightarrow 45 min observation cut-off
- □ HPC resources ↑
- ❑ → Average lead time reduction of 2 hours in NWP input to post-processing systems

UKV - extra observations **not** assimilated in global model data assimilation

- □ **GeoCLOUD cloud fraction profiles** (hourly, 12km thinning)
- Cloud fraction profiles from SYNOPs (hourly)
- □ **Radar-derived surface rain rate** (15min, 5km resolution)
- **Doppler radial winds from 16 UK radars (10min)**
- □ AMVs from NWC SAF (hourly)
- □ T2m & RH2m from roadside sensors (hourly)
- □ Visibility from SYNOPs, METARs and *roadside* (hourly)

Recent developments

10:24

www.metoffice.gov.uk © Crown copyright Met Office

Set Office Radiosonde recovery in hourly cycle

Set Office Roadside sensor network

T_{2m} / RH_{2m} (*reductions*)

Visibility (now operational)

Forthcoming changes (operational in Spring 2019)

1024

Moisture incrementing Operator (MIO)

1024

Marco Milan

[∞]Met Office Summary of MIO

- □ Humidity control variable in VAR is function of RH_{total}.
- □ Older versions of MIO led to spin-up in precipitation.
- □ In operational UKV a 'bypass version' is used,
 - \succ q' = q_T'
 - > q_{cl} ' and q_{cf} ' develop as model evolves
- □ MIO subdivides q_T into q', q_{cl} and q_{cf} based on the cloud fraction (liquid C_l and frozen C_f).
- Increments are adjusted using statistics of perturbations from MOGREPS-UK ensemble (function of RH_{total} and vertical level).

Set Office Theory of MIO (Migliorini et al., 2018)

1. Increments in cloud water content are derived as:

$$q_{cl}' = C_l \left(q_T' - q_{cf}' - q_s' \right) \simeq C_l \left(q_T' - q_{cf}' - q_s \frac{\partial ln(e_s)}{\partial T} T' \right)$$

2. Similar approach for cloud ice content gives:

$$q_{cl}' \simeq \frac{C_l \left(1 - C_f\right)}{1 - C_l C_f} \left(q_T' - q_s \frac{\partial ln(e_s)}{\partial T} T'\right)$$

- Linear regression between ensemble perturbations and theoretical values provides coefficients. For every model level we compute 22 coefficients relative to RH_{total} (RH divided in bins of 5%).
- 4. When MIO is applied, the increments are adjusted using the pre-computed coefficients.

Set Office MIO impacts

- □ Statistics over ~ 50 days in Winter 2017-2018 and Summer 2017.
- Comparison between runs with and without MIO.
- Positive impact on precipitation scores. > Mostly for short-period and in winter.
- □ Other variables: impact relatively neutral. T_{2m} slightly worse in Summer, but better in Winter.

16.0mm 32.0mm

64 0mm SOL percentile

Mode-S winds

Ed Stone, Zhihong Li, Gareth Dow

1024

Current Mode-S coverage

6 receivers

~6 million obs per day

www.metoffice.gov.uk

© Crown Copyright 2018, Met Office

FSS of 1 hr precipitation accumulation (01/07/2017 – 13/08/2017)

1hr Precipitation Accumulation (mm), Fractions Skill Score (Forecast - Analysis), UK area (scale rainfall), Equalized, 20170701 00:00 to 20170813 23:00, Unspecified truthtype, Difference (PS41andModeS - PS41)

© Crown copyright Met Office

© Crown Copyright 2018, Met Office

Further ahead (operational in Summer 2019)

1024

Soil Moisture DA for the UKV

$$x_i^b = x_i^b + K_i \left(y_i^o - H_i(x^b) \right)$$
$$K_i = BH^T \left(H^T BH + R \right)^{-1}$$

- New system applies same EKF method used in global model at each hourly UKV analysis
- Obs interpolated to model grid
- B and R diagonal and isotropic, using realistic values of model and obs errors
- H(x) taken from model background
- Kalman Gain H estimated by finite differences, running offline Jules model with perturbations.

www.metoffice.gov.uk

Breo Gomez, Cristina Charlton-Perez

© Crown Copyright 2018, Met Office

Soil Moisture DA (Aug 2017 trial) Soil Moisture DA (Aug 2017 trial)

1.5m Relative Humidity

Surface (1.5m) Relative Humidity (%), Current UK Index station list, 18Z DT, Equalized and Meaned between 20170801 00:00 and 20170903 00:00, Surface Obs

Improvement in the BIAS and RMSE, particularly in early afternoon

1.5m Temperature

Surface (1.5m) Temperature (K), Current UK Index station list, 18Z DT, Equalized and Meaned between 20170801 00:00 and 20170903 00:00, Surface Obs

Cooler BIAS, but still shows substantial improvement of RMSE in early afternoon

Breo Gomez, Cristina Charlton-Perez

Future Plans

- Radar Reflectivity
- □ Snow analysis
- Sonde descent data
- □ Hybrid 4D-Var in UKV (*exploit improved ensemble*)
 - > In meantime, NMC method for 90 level covariances

Solution State State

□ Technique established in global model, but new for UKV

- > measuring impact on 3-hour forecast
- > error metric is basket of SYNOP reports of T2m, RH2m, V10m, Vis2m

□ Initial sample of 7 weeks data (combined Summer/Winter)

□ Large run to run variability – but observations beneficial overall......

Average Total FSOI Impact by Obs Type

Negative=beneficial Positive=detrimental

Roadside RH2m and SYNOP RH2m provide largest beneficial impact

Detriments to investigate......

Helen Buttery

Average Total FSOI Impact by Obs Type - NEW COV

Negative=beneficial Positive=detrimental

Total benefit higher

Roadside T2m now beneficial, but SYNOP T2m still gives detriment......

Helen Buttery

Gareth Dow

Value of hourly operational forecasts

© Crown copyright Met Office

Gareth Dow

Routine monitoring of Mode-S data against operational UKV since July 2014 (Adam Maycock)

O-B RMS wind errors in Mode-S are similar to those in AMDARS at 2-3 m/s, but Mode-S temperature errors (~2.5 degrees) are much larger than AMDARS (~0.5-1.0 degrees).

© Crown copyright Met Office

Assimilating Mode-S winds into hourly cycling 4D-Var UKV

- Experiment periods
 - Summer 2016: 01/07/2016 30/07/2016 (30 days)
 - Winter 2016: 16/11/2016 15/12/2016 (30 days)
- Experiments
 - Control: All existing routine types of observations with all AMDAR/AIREP but no Mode-S
 - Half AMDAR/AIREP: All existing routine types of observations with thinning of 80km x 50hPa x 120mins on AMDAR/AIREPS (winds, temperature and relative humidity) No Mode-S.
 - Mode-S T15: Half AMDAR/AIREP + Mode-S winds with 15mins thinning (winds only)
 - Mode-S T10: Half AMDAR/AIREP + Mode-S winds with 10mins thinning (winds only)

O-B Mode-S winds stats in T10W 16/11/16 - 15/12/16

RMS errors ~ 2 m/s at lower levels, increasing to ~ 3 m/s at 12km

Date and time: 20161116-20161215

© Crown copyright Met Office

O-B AMDAR winds stats in T10W) 16/11/16 - 15/12/16

RMS errors ~ 2-2.5 m/s at lower levels, increasing to ~ 3 m/s at 12km

Date and time: 20161116-20161215

© Crown copyright Met Office