



# Biomass and soil moisture simulation and assimilation over Hungary using an offline land surface model with prognostic vegetation

### Balázs Szintai<sup>1</sup>, Helga Tóth<sup>1</sup>, Zoltán Barcza<sup>2</sup>

<sup>1</sup>Hungarian Meteorological Service, Budapest, Hungary

<sup>2</sup>Eötvös Loránd University, Budapest, Hungary









## Introduction

ImagineS Project: 2012-2016 (EU-FP7)

- Land Data Assimilation System (LDAS) was implemented at the Hungarian Meteorological Service
- Running near real time (10 day lag)
- Monitoring of:
  - Vegetation
  - Soil moisure
  - Surface fluxes (moisture, CO<sub>2</sub>)

Land Data Assimilation System:

- SURFEX model (with prognostic vegetation: ISBA-Ags)
- 12 ISBA patches
- 8 km resolution over Hungary
- EKF assimilation of:
  - LAI: SPOT-VEG (until May 2014) and PROBA-V (from May 2014) at 1 km resolution, 10 day average, timeliness: 10 days
  - **SWI** (Soil Water Index) [0,1]: MetOp. ASCAT 10 km resolution, 1 day average.



# **Results – 2012 drought**

#### LAI monthly anomalies - 2012



#### Root zone soil moisture monthly anomalies- 2012



-1

-2

Ó



### Plan – 1

### Daily updated LAI in the AROME operational NWP model

• Currently operational NWP models use LAI climatology



• Goal: implement daily updated LAI from ImagineS system to AROME



Offline ISBA-Ags run forcedby observations



### **Plan – 2**

### Long-range land surface forecasting system with prognostic vegetation

- Based on ISBA-Ags
- Started from analyses of the ImagineS system
- Forced with ECMWF extended range or seasonal forecasts