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Impact-based hazard forecasting
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How can you observe “impact”?
How do you validate impact models?
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CASE STUDY:
Social sensing of floods in the UK

Arthur, Boulton, Shotton & Williams (2018) PLoS ONE 13(1): e0189327.
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Does flood-related social media
activity correlate with real floods?

Twitter dataset: 17,828,704 tweets from 2015-2016.
Keywords: “flood”, “flooded”, “flooding”

Flood dataset: Known flood events in England & Wales
(Flood Forecasting Centre).

Method: Correlate Tweets per day vs Floods per day

All
Tweets Remaining 17828704

Correlation 0.206




True positives
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... and false positives
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Filter by timezone

Remove all tweets from wrong (non-UK) timezone.

All Timezone
Tweets Remaining 17828704 1105360
Correlation 0.206 0.551




Filter out robots and retweets

Remove all tweets from obvious “bot” accounts.
(Spot them by their very large volume of activity.)

Remove all retweets (they are not useful).

All & Bot Retweet

Tweets Remaining 17828704 1051295 582141

Correlation 0206 05 0591




Filter for relevance

Make a relevance filter to remove all irrelevant tweets.
* Tag a few thousand tweets as “relevant” or “irrelevant”

* Make a “naive Bayes” model to automate tweet classification

All Relevance
Tweets Remaining 17828704 122281
Correlation 0.206 S vk




Spatial correlation

Do tweets about floods
come from places where
floods are happening?

Verified flood events 28™ Oct 2015
(Flood Forecasting Centre)




L ocation Inference

All Tweets Any Location Info
122281 79163
(Geotag Loc: GPS Loc: Toponym Text: Toponym
1574 349 59179 41315
GPS coordinates  GPS coordinates Placename Placename
attached to tweet in user profile in user profile in tweet text

Use GPS where available. Else infer most likely location
from all available information (Arthur et al 2018)
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Finding floods

1.0

| Social floodiness

Measure activity in each cell of (arbitrary resolution) grid spanning England & Wales.
For each cell, define a threshold T to normalise for population density — “floodiness”.

| Floodiness > T
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Validation
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FFC data is recorded at level of “administrative area” (roughly county). Colour each area
by floodiness of grid cells within. For quantitative evaluation see Arthur et al 2018.
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Using Social Media to Detect and Locate Wildfires (2016)

Chris A. Boulton Humphrey Shotton Hywel T. P. Williams
College of Life and Environmental Sciences College of Engineering, Mathematics and College of Life and Environmental Sciences
University of Exeter Physical Sciences University of Exeter
c.a.boultonf@exeter.ac.uk University of Exeter h.t.p.williams(a@exeter.ac.uk

Apr—Sept 2015 Insta Vs MODIS Correlation

Correlatlon ( r)




Article

@choo: Tracking Pollen and Hayfever in the UK

Using Social Media (2018)

Sophie Cowie !, Rudy Arthur ! and Hywel T. P. Williams 12 *(
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Work-in-progress: Social Impacts of Named
Storm Events in the UK and Ireland

Spruce, Arthur, Williams (in prep) Meteorological Applications.
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Storm Brian (2017)
observed by social
sensing.



Humour
“Brian? What kind of name is that for o storm? Everyone knows Brign is a snail.”

“Am [ the only ane to find it really hard to take a storm called #Brian seriously 2"
“And Brian? Really? Storm Ramba or Terminator would be far better than #5tormBrian”

Damage

“This is the scene this morning as the waves have damaged the Harbour Office during Storm Brian.”
“Storm Brian damage causes floodlight damage. Revised home game vs @ ChesterCityFC"
“Scaffolding in Helsby High Street BLOWN OVER by #StormBrian high winds”

i .
“Train delay: National Rail have warned of delays due to high winds from Storm Brian™
“Storm Brian latest - tree blocks railway lines and hovercraft suspended”

“Major motorway was CLOSED after Storm Brian floods carriageway”

Observations

“It's really windy out therel™

“Storm Brian seems to have arrived now...”
“Storm Brian just brought in the heaviest rain shower I've ever seen.....it really scared our 2 caots.”

Warnings

“#5tormBrian could lead to travel disruption this weekend.”

“Storm Brian set to batter UK with heavy rain and 70mph winds.”
“Take care on the coast folks. Waves are guite high with #5tormBrian”




Detecting social impacts

* Collected tweets relating to wind/precipitation/storm-
names over period spanning 8 named storms

* Applied filtering and location inference (retained
~2.5% of ~101m tweets)

* Two forms of impact detection: sentiment
(emotional impact) and content (substantive impact)




StO rm B rl an Typical sentiment

(non-weather tweets)
Precipitation tweets
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Storm Brian
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Discussion

Social sensing has been demonstrated to provide robust
detection/location of multiple types of weather hazard

Developing methods to automate detection of social impacts
(disruption, damage, ...)

Opportunities: Now-casting & Forecast verification
Looking for new case studies / collaborations!
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