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Spectral transform with semi-implicit semi-Langrangian (SISL) time-stepping
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FFT: Fast Fourier Transform, LT: Legendre Transform
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Vertical discretization

Hybrid pressure
based vertical
coordinate n(p)
Finite Element
discretization based
on cubic spline
elements
Accurate vertical
Integrations with
noticeable positive
impact in the
stratosphere

(Untch and Hortal,
QJRMS 2004)



New VFE for H/NH in IFS in collaboration with member states

Hydrostatic-IFS: Finite Element discretization in the vertical (VFE)
NH-IFS: Finite Difference vertical discretization (applying FE to NH not straightforward due to C1
constraint)
New VFE (Vivoda, Smolikova, Simarro MWR 2018) overcomes “C1 condition” restriction at the price
of a small computational overhead:

* A single code base for a unified H & NH version that is stable and can have order of up to 12

» Allows use of single precision in high order

* Having the same discretization for both H and NH model will allow use of same numerics and

“fair” straightforward comparisons between the two formulations

1-Nov-2018 to 28—Feb—2019 from 220 to 239 samples. Verified against 0001. New VFE compared with current scheme
oor;d;r:ei sgffogitgv:itg 3;(1:2 ;nﬂation and Sidak correction for 4 independent tests. in the hy drostatic model:
« Same cost
* Neutral scores
» High order VFE gave neutral scores
* At 30km res temperature RMSE

Z:NH 20° to 90°, 500hPa
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B e R e S e R SIS BT reduces in the stratosphere (but note
Forecast day Forecast day resolution dependence of IFS
 hewVFE-contol temperature biases)
Many thanks to J. Vivoda (SHMU) who visited ECMWF to couple * New VFE could be adopted and
this new VFE scheme with the global spectral IFS replace current one (future work)
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Horizontal resolution sensitivity of temperature biases

Stratosphere cools in the global mean with increase in horizontal resolution - biases worse in
the lower- to mid- stratosphere with increase in horizontal resolution. Affects all forecast ranges,
from medium to seasonal (Polichtchouk et al ECMWF TM 847).

Resolved dynamics the culprit. Forecasts with no physical parametrizations, show the same

horizontal resolution.
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Higher order vertical semi-Lagrangian (SL) interpolation
Does improving accuracy of vertical semi-Lagrangian advection help?

Going from 39 to 5! order vertical interpolation helps = Stratosphere warms with higher order
interpolation at high horizontal resolution.

Low horiz res. TL255: quintic - cubic High horiz res. TCo1279: quintic - cubic
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High order departure point calculation scheme option for CY47R1
Available in 47r1 (implemented by F. Vana)

Lobato Il1IA Runge-Kutta for DP: similar properties as Crank-Nicolson

but higher order d a Q a

» AT order 1/2 |s/24 1/3 —1/24
« A-stable : . ,

«  Symmetric 1 1/6 2/3 1/6

* Requires solution of two implicit stages which is done iteratively as 1/6 2/3 1/6

the SETTLS scheme (but twice more expensive)

T+48; 200hPa T472; 200nPa Initialise with an explicit method and then iterate:

r.'\(/:) — r.A _%[SVHM (r.A) +8Vt+At/2 (r|\(/:_l)) _Vt (r.[()l—l))]

-135 90 45 0 45 90 135
——————

(=12,..
r|(3|) _ r.A _%I:VHM (rA) + 4Vt+At/2 (r|\(/:)) +Vt (rél—l)):|’

-60 -30 0 30 60

« RK4 with quadratic wind interpolation (at M, D) in above

« Extra cost ~ 10% mainly due to quadratic wind interpolation

e iterations

R ;7,;;‘_;,4:;;.;_%,,_-‘.:“.:.«4'; o * Research experiments at ~30km res are overall neutral but
o A e | show some improvement at 200 hPa temperature
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Optimizing spectral transforms on GPUs: results from stand alone dwarf
4

— perfect scaling
O IBM Power9 CPUs

£} NVIDIA V100 GPUs, CUDA-aware MPI
NVIDIA V100 GPUs, CUDA-aware alltoallv

w

/\A\
summil

« At high resolution the
communication and overall
computational cost of spectral
transforms rises considerably

» At 2.5km resolution, the time-step
must be less than 1s to fit
operational requirements including
communication cost of the
transpositions

—h

runtime per timestep in seconds
N

0 I I = = = .
Slide courtesy of Andreas Mueller based on 240 480 960 1920
optimizations by Alan Gray (NVIDIA)

number of nodes x 6 == no of GPUs

This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE office of
Science User Facility supported under contract DE-AC05-000R22725.
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IFS-FVM main features

Finite-volume (uniformly second-order accurate in space-time)

L 4
Y

-

Deep-atmosphere nonhydrostatic fully compressible equations in perturbation form
o

Fully conservative and monotone advective transport

L 4
P

_4

Shares important properties with IFS-ST (co-located, octahedral grid, physical parametrisations,..)

FVM numerical framework is flexible (curvilinear coordinates, mesh, time-stepping, governing
equations, domain)

/-

e

“Light” communication overhead due to local stencils as opposed to global com heavy IFS-ST
p

FVM uses Atlas library (parallel data structures, mesh generator, memory management,...), which will |
greatly facilitate adaptation to future HPC systems
A

4
~

FVM so far delivered at least similar solution/forecast quality to IFS-ST on standard test and shows
potential for high computational efficiency
AN

J RN
& 4 ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 9



Governing fully compressible NH IFS-FVM equations

Flux-form fully compressible egns with moist precipitation processes and IFS phys
parametrizations (Kuhnlein et al. GMD 2019):

9G pd : coordinate transformation
+V - (vGpg) =0, G+ coora
ot Jacobian
0Gpgu | — 0,GVy' +gB —f o M+ P
o TV (vOpgu) =Gpg | —0,GVe" +gB —f X {u— e B ' V: contravariant velocity
3, e’ _ / : .
‘ ggﬂ’ +V- (vgpd 9’) ~ Gpy [—GTU+ v, + P } : 0': potential temperature
, 2 perturbation from an ambient
‘ Q;:rk +V - (vGpy ) = GpyP'k where r, =r,,r, 1, F, s State a
C
dGpg N 5
—Z9 2 V. (vGpy A3) = GpgP"? | OP: Exner_pressure _
ot perturbation from an ambient
Ry Ra/cvd state a
tp‘r:‘:ﬂd |:(—pdﬂ(l—|—rvfﬁ]) —ﬂ'a] .
Po
M’ : contains metric forces
ith: ) ) . .
i . 6(1+ry/c) R, ) r, : MOist species mixing
v=Gu, 6,= , =, 0 =6-10., ratios
6 v 14+r,/¢
B=1- "2 —1_ (634-9’), ﬂz—vf, r¢=Zrk=rv+r:+rr+-";+rs-
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kinetic energy
-

IFS-FVM comparison to hydrostatic IFS-ST. dry adiabatic dynamics
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First IFS-FVM real weather forecasts experiments from ECMWEF analysis

Tuesday 22 May 2018 00 UTC ECMWF IFS-FVM t+84 VT: Friday 25 May 2018 12 UTC, Surface Total Precipitation (mm/day)
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Same initial conditions and physics with operational
IFS-ST are used

Tuesday 22 May 2018 00 UTC ECMWF IFS-ST t+84 VT Friday 25 May 2018 12 UTC surface Total precipitation (mm/day) R
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Stratiform+convective surface precipitation
rate (mm/day) at t+84h using O640(18km)/L62

IFS-ST
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Snapshot of computational efficiency: IFS-FVM vs IFS-ST

Dry baroclinic instability experiments in identical configuration
01280/TC01279 (9km) with L137

12
Time steps of IFS-FVM were a factor of 6-7 smaller than IFS-ST
IFS-FVM factor 2 slower than hydrostatic IFS-ST > 105
U X -
IFS-FVM faster than nonhydrostatic IFS-ST 2 o C. Klhnlein 2018
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Atlas and multiple grids

« Atlas (Deconinck et al, 2017):
— provides flexible data structures, grid/mesh generation capabilities

— mathematical operators for NWP & climate modelling software developments in a parallel HPC
environment

— Accelerator ready: functionality to facilitate computation on GPU hosts

* It is the basis for new developments:
— FVM dynamical core developed in Atlas

— Underpins work to produce an IFS version which can seamlessly run on either traditional CPU or
heterogenous with accelerators (GPUSs) architectures

— Using its newly developed multiple grids feature allows to combine in a “non-intrusive” way different
tracer transport schemes (dynamical core components)

— In 46R1 we have developed a prototype for testing tracer transport driven by IFS winds using MPDATA
(transport scheme of FVM) or SL advection at a mesh which may have same or different resolution.
Eventually the aim of this work is to run expensive processes such as chemistry at a lower resolution
grid

l o
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Transport on multiple grids: ozone transport at 32km grid forced by winds from a

18km model
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Semi Lagrangian time step
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IFS with MPDATA CO2 tracer transport (Atlas multiple same resolution grids)

Tuesday 31 March 2015 00 UTC ecmf t+24 VT:Wednesday 01 April 2015 00 UTC surface CO2 column-mean molar fraction
Tuesday 31 March 2015 00 UTC ecmf t+24 VT:.Wednesday 01 April 2015 00 UTC surface CO2 column-mean molar fraction
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days (18km res)
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September 2017 00 UTC ecmf t+12 VT:Friday 15 September 2017 12 UTC Model level 137 Experimental prod

Tuesday 313h::rch 201503(;:JTC ecmft;:: VT:Wedne;jay 01 Aprll:::s 00 UTC::rface COZ:;c;Iumn-mear;:olarfractl( o LOca”y maSS ConserVIng MPDATA
T I Is driven by IFS winds and sub-

stepped in IFS (CFL restriction)

Outstanding issues IFS-ST-MPDATA:

« MPDATA operates on height
levels derived from spectral IFS

» Spectral ripples from forcing fields
contaminate MPDATA BCs with
noise in steep orography (not an

issue for FVM which uses MPDATA advected air density
consistently a FV discretization) lowest level
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Summary

« ECMWF maintains and continues performance optimisation and development of both
hydrostatic & non-hydrostatic dynamical cores in close collaboration with member state and
industrial partners

* Development of a new dynamical core based on Finite Volume discretization is
progressing well:

— Promising scientific results

— Good scalability and efficiency
* Work to investigate Discontinuous Galerkin SL has begun with funding from ESCAPE-2
» Atlas NWP library:

— “Bedrock” of new developments

— Allows combining elements of different dynamical cores under a unified code as demonstrated
by multiple grids case

Thank you for your attention!
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