

ACCORD overview of Land Surface Data Assimilation

E. Kurzeneva, basing on contributions of many colleagues ...

Canonical System Configurationss

- AROME
- HARMONIE-AROME
- ALARO

National Weather Services

United Weather Centers

- MetCoOp/UWC-East
- UWC-West
- • •

Horizontal part of Land Surface DA

- OI CANARI: tuning of length scales
- OI gridPP
- + QC Titan
- + scripting system pysurfex
- Suggests modular approach for easy tuning of QC, useful for crowdsource data
- Maximization of probability, alternatively to minimizaton of errors => different parameter notations
- For MetCoOp in nowcasting mode (without cycling), with NetAtmo observations improved RH2m scores

T. Aspelien, E. Gregow, P. Samuelsson

Physiography in DA

- DA physiography: 150 sec res, water and land, 50% masking
- Model physiography: 30(10) sec res, 4 tiles, up to 20 patches, 0 (100) % masking
- Inconsistencies reveal differently, depending on a scripting system of CSC
- The most sensitive parameter is snow
- Work on harmonization: corrections needed everywhere
- On track

E. Kurzeneva

Vertical: assimilation of Land Surface Temperature from SEVIRI in ISBA-FR

- LST retrieved from SEVIRI, 5 km resolution after thinning. Affected by cloudiness.
- Assimilated together with SYNOP T2m and RH2m in AROME ISBA-FR with vertical OI
- New OI coefficients, developed for the new variable. Obs. and bgr. errors and correlations are estimated by Desroziers method
- Resulting LST is transferred to UA analysis for obs. operators
- First experiments over France show improvement of T2m and RH2m and upper air forecast scores
- Application of this methodology to LST from IASI is planned.

 Evaluation of land surface temperature assimilation on AROME forecasts against Synops 										
Fored range	cast es	0h	6h	12h	18h	24h	30h	36h	42h	48h
T2m	(K)	-0.01	0	0	0	0.01	0.01	0	0.01	0.01
Hu2r	n (%)	-0.02	0.01	0.04	0.08	0.06	0.06	-0.02	0.01	0.07

Z. Sassi, C. Birman and MF colleagues

Vertical: OI for ISBA-DIF

- ISBA-DIF: 14 layers in soil, down to 12 m, up to 12 layers in snow
- Simplified OI, mainly for validation of ISBA-DIF: t and w increments decreasing within the soil
- Assimilation of T2m and RH2m
- Promising results over small domain in France: neutral scores in winter, warm dry bias during night in autumn

 Similar experiments over Austria: ISBA-DIF is warmer

S. Schneider and S. Oswald

Vertical: SEKF for ISBA-FR

- Assimilation of T2m and RH2m into 3-layer ISBA-FR with SEKF
- Linearity check with positive-negative Jacobians, restricting of Jacobians and of innovations
- Tuning of assimilation parameters
- Experiments over Central Europe. Positive impact on T2m, Td2m and precipitation scores

Case study 24-accum. prec, 00.24.07.2020.+30h

Radar

ΟΙ

EKF

H. Toth

Vertical: SEKF for ISBA-DIF

- Assimilation with SEKF of T2m and RH2m into ISBA-DIF with 14 layers in the soil, down to 12 m, up to 12 layers in snow. Includes also Multi-Energy-Balance scheme: thermal balance for vegetation. 2 patches
- Linearity check with positive-negative Jacobians, restricting of Jacobians
- Long experiment over
 AROME-ARCTIC domain
- Results are promising: better T2m and RH2m scores comparing with ISBA-FR/OI. But difficult to access the impact of SEKF

Spring validation period April - July 2020

Å. Bakettun, T. Aspelien, P. Samuelsson

Vertical: EnKF for ISBA-DIF

Figure: TG1 to TG3 increments for 14th July 2020 at 12 local time. Blue/red indicates decrease/increase in soil temperature for that layer.

- Assimilation with EnKF of T2m and RH2m into ISBA-DIF with 14 layers in the soil, down to 12 m, up to 12 layers in snow.
- Research activities, over AROME-ARCTIC domain
 - EnKF is based on the perturbed off-line forcing
 - Works technically and provides reasonable results.
 - In future, to use for assimilation of satellite radiances

J. Blyverket

Experimental assimilation of LAI

- LAI data of Sentinel 2, res. down to 10m
- ISBA-DIF with prognostic LAI, 12 patches, full run with AROMEcy43 over Austria for June, physiography improved locally
- SEKF to assimilate only LAI
- Effect on T2m scores: assimilation is beneficial.

No DA, 1 patch, clim. LAI No DA, 12 patches, prognostic LAI No DA, 12 patches, prognostic LAI and high-resolution land cover data SERF assimilation of LAI, 12 patches, prognostic LAI

S. Schneider

Assimilation of satellite SE

- 2 products of SE:
 - CryoLike (Met.no). Composite.
 - EUMETSAT H SAF (FMI). Metop.
- Both products are NWP-oriented.
 - CryoLike: swaths =>
 2.5 km model grid =>
 thinning to 10 km
 - H SAF: swaths => snow barrels, irregular locations representing 10x10 pixel boxes
- Simple algorithm a la ECMWF
- For MetCoOp.
- Not easy to demonstrate an effect on standard scores, however sensitivity is well seen.

T2m, 25.05.2020, 15 UTC

Only SYNOP

SYNOP+CryoLike

Snow barrels, SWE, kg/m**2, 12.04.2017

OL-SYNOP

OL-(SYNOP+SE)

M. Homleid, L. Rontu, E. Kurzeneva

EKF for Simple Ice Scheme

- SICE: temperature profile in the ice and ice depth. Snow with ISBA-ES. Governed by Sea Ice Concentration observations.
- L2 NRT VIIRS Sea Ice Surface Temperature from OSI SAF. Resolution 750m, only over satellite overpass, gaps due to cloudiness
- Bias-aware 1D EKF.
- SIST is fast variable, model is biased

Y. Batrack

classic extended Kalman filter

 $B = MAM^{T} + Q$ $K = BH^{T} [HBH^{T} + R]^{-1}$

 $X_a = X_b + K[Y - \mathcal{H}(X_b)]$ A = [I - KH]B

bias-aware extended Kalman filter

$$B = MAM^{T} + Q$$

$$K = BH^{T} [HBH^{T} + R]^{-1}$$

$$K^{b} = B^{b}H^{T} [HB^{b}H^{T} + HBH^{T} + R]^{-1}$$

$$b_{a} = b_{b} - K^{b} [Y - \mathcal{H}(X_{b} - b_{b})]$$

$$X_{a} = (X_{b} - b_{a}) + K [Y - \mathcal{H}(X_{b} - b_{a})]$$

$$A = [I - KH] B [I - KH]^{T} + KRK^{T}$$

EKF for Simple Ice Scheme

- Verification vs MODIS SIST and Swalbard coastal stations T2m
- Small Nordic domain, 1.09.2019-01.02.2020
- Promising results, reduction of RMSE
- Effect decreases with lead time

Towards coupled DA

- Internally funded project H2O at Met.no R. Stappers
- Application of project CAISA at SMHI J. Bojarova
- Ts from the surface analysis is used in UA analysis

Thank you for your attention!

27.09-01.10.2021 43 th EWGLAM and 28th SRNWP meeting