Current activity in atmospheric Physics in COSMO (for ICON-LAM)

- ✓ Improving cloud-radiation interaction:
 - Implementation of ecRAD into ICON
 - revised parameterizations of cloud optical properties: COSMO-> ICON
 - o <u>offline</u> CAMS-aerosol data and prognostic 2D AOD approach
 - ICON-ART aerosols including operational mineral dust-forecast
- ✓ Introduction of stochastic components into the shallow convection
- ✓ <u>More about Separated Turbulence Interacting with non-turb. SGS Circulations:</u>
 - $\circ~$ Operational CAT-forecast for aviation based on EDR from TURBDIFF
 - TKE production and buoyant heat flux by SGS sub-grid near surface kataand anabatic circulations
 - **o** Thinking about turbulence saturation adjustment embedded into convection
- ✓ <u>Revised Surface-to-Atmosphere Coupling and Roughness-layer treatment</u>:
 - Consideration Roughness by inter-tile variability
 - Implicit treatment of surface temperature
 - Consideration of a semi-transparent and mass-carrying R-layer (plant canopy) and about a vertically resolved atmospheric R-layer

Clouds and Aerosols Improvements in ICON Radiation scheme - CAIIR PP

Participants:

- Harel Muskatel (IMS)
- Pavel Khain (IMS)
- Alon Shtivelman (IMS)
- Yoav Levi (IMS)
- Ulrich Blahak (DWD)
- Daniel Rieger (DWD)

- Alexey Poliukhov (RHM)
- Julia Khlestova (RHM)
- Gdaly Rivin (RHM)
- Natalia Chubarova (RHM)
- Marina Shatunova (RHM)
- Improved parameterizations of optical cloud properties
 - Inclusion of larger and multi-shape particles (including precipitation)
 - Considering SGS variability of cloud properties
- Transfer of development from COSMO-model to ecRAD-implementation of ICON-model
- Implementing more-realistic information about aerosols

optical properties (as input for radiation): ext. coeff., single scat. alb., asymm. fact., delta-transm. fact.

Simplified 2D quasi-prognostic aerosol scheme based on input by AOD-climatology:

by Günther Zängl -> Daniel Rieger

 $\psi_j \qquad \ \ \, \text{2D AOD for aerosol component } j$

 $\langle \underline{V}_h \rangle$ 2D vertically averaged horizontal wind speed

2D emission with some new implementations (by **Daniel Rieger**):

- mineral dust (j=d) emission according to Kok (2014), with the computational cheap assumption of size distributions being independent on wind speed
- sea spray aerosol (j=ssa) emission according to Grythe et al. (2014)
- anthropogenic aerosol (j=anth) to be parameterized by means of land-use fractions or an emission climatology

2D wet deposition

related AOD through Mie-calculations

 ${\sf S}_{{\sf w},{\sf j}}$

S_{e,j}

- Cheap approximation of a full 3D aerosol model
- Is able to add a significant benefit compared to a pure climatology
- Improves radiation output of the model
- Impact to 2m temperature mainly neutral (possibly due to previous tuning)

Picture by Daniel Rieger, DWD

ICON-ART dust forecast

KIT Dust dashboard:

https://www.imk-tro.kit.edu/english/10581.php

Dust Forecast

The German Weather Service (DWD) performs quasi-operational forecasts of mineral dust concentration using the ICON-ART forecast system developed jointly with KIT. From these predictions, the Aerosol Optical Thickness of Mineral Dust (AOD) can be calculated. This quantity is a measure of the attenuation of solar irradiation at the earth's surface.

WMO Dust forecast:

https://sds-was.aemet.es

Slide by Bernhard Vogel, KIT

Matthias Raschendorfer

Pollen forecast using ICON-ART

Jochen Förstner, Christina Endler, Stefan Muthers et al.

Side by Bernhard Vogel, KIT

-10

20

25

15

10

 ecRAD-could much better be adapted to the corrected cp/cv-bug (with regard to the turbulent tendencies used in ICONs isochoric T-equation):

Bias of ICON total surface flux July 2020 vs. Era5, ⁴⁰ plots by M. Köhler

 Surface flux bias reduced by 26 W/m², mainly due to 20 W/m² radiation bias reduction; improved sensible heat flux

- New radiation scheme ecRad improves ICON model, especially clouds and radiation, still some regional biases.
- Radiation uncertainties: solver, cloud (ice) optics, cloud inhomogeneity, 3D: 1-2 W/m² in global fluxes; vertical overlap: 5 W/m²

COSTINUES AND

Slide by Sophia Schäfer, DWD

Physical Process in COSMO ICON-LAM			Method		Name	Authors
	Radiation Transport		δ two-stream (in COSMO only)	utilization of different aerosol input; revised optical cloud properties [COSMO_nwp->ICON] new cloud activation		Ritter/Geleyn (1992)
Local Parameteriz. of atmospheric source terms			Rapid Radiative Transfer		RRTM	Mlawer et al. (1997)
					ecRAD	Hogan et Bozzo (2018)
			1-moment; 3 prognostic ice phases; prognostic rain and snow		Doms (2004) Seiffert (2010)	
SGS cloud	Microphysics		opt. 2-mom. version (with ML-based ext.) $ abla$			
generation	Not yet completely considered sub-grid scale processes such as: Separated Horizontal Shear circulations, Thermal Sub-grid Scale Orography (TSSO) circulations					
Grid-scale Parameteriz. of sub-grid scale atmospheric processes (dependent on horizontal resolution)	- Convection	deep	2-class (updraft-downdraft) mass-flux		Tiedke (1989) / Bechthold	
		shallow (stochastic)	equations with moisture convergence closure and simplified microphysics and a stochastic component for shallow conv.		et al. (2008), Plant/Craig (2008)	
	Mechanical Sub-grid Scale Orography (MSSO) impact		orographic blocking and breaking of vertically propag. Gravity Waves (GW)		Lott and Miller (1997)	
	Quasi-Isotropic Turbulence		2-nd order closure; progn. TKE with addit. scale-interaction terms (STIC); horizont. BL-approx. with opt. 3D-extens.; turbulent saturation-adjustment		TURBDIFF	Raschendorfer
Ļ	Surface-to-Atmosphere Transfer and Roughness- Layer effects		transfer-resistanc const. turbulent/lar normal to roughn (direct application	es based on vertically min. near-surface fluxes ess-covering surfaces of turbulence scheme)	(2003,->) TURBTRAN	
Below surface processes			substantial and semi-transparent canopy layer [COSMO_tst->ICON]		TERRA (incl. partial sl/ml snow cover), FLAKE	
			Matthias Raschendorfer		EWGLAM/SRNPW, Telco 2021	

Some other related promising general activity:

(partly still rather basic research)

- Consistent treatment of sub-grid cloud processes
 - SGS Convection based on <u>conditional domain closure</u> and <u>STIC</u>
 - Turbulent Saturation Adjustment embedded in convective sub-domains

Matthias Raschendorfer, Martin Köhler

- Turbulence-Interaction with **M**icro-**P**hysics beyond pure SA:
 - Consideration of <u>turbulent statistics in MP</u>
 - Deriving missing correlations between model variables and MP-sourceterms in 2-nd order budgets for turbulence

Dimitrii Mironov, Axel Seifert

- Increasing the range of scales included to turbulence closure:
 - coherent structures with skewed distributions, TKESV

Dimitrii Mironov, Ekatarina Maschulskaya

Effect of shallow convection parameterization on resolved precipitation :

Pave Khain (Isreaeli Met Service), Maike Ahlgrimm (DWD), ...

ICON-simulation (about 2km resolution)

- Parameterized Shallow Convection (PSC) is still necessary, particularly at convective regimes
- But at more advective regimes (mainly at wintertime) with mainly shallow cumulus clouds, . PSC considerably reduces resolved vertical motion, and with it. overall precipitation
- PSC can't be tuned in order to produce the needed complementary SGS rain. Rather it needs ٠ to be artificially suppressed for those regimes: new stochastic version performs a bit better
- Some necessary interaction with grid-scale dynamics seems to be missing, which may be:
 - Insufficient scale-adaptation of PSC against turbulence and Grid-Scale (GS) motions 0
 - Inconsistent thermodynamics in connection with SGS cloud-processes 0 (related condensation heat becomes not (completely) active for grid scale dynamics)
 - Missing effect on dynamics by SGS motions apart from turbulence and convection 0

Picture by Pavel Khain, IMS

0.075

0.025

0.000

-0.025

-0.050

-0.075

-0.100

- From non-turbulent sub-grid flow patterns (circulations)
 - Connected with coherent structures being not in accordance with turbulence closure
 - Would be expressed by grid-scale 3D-shear, if the patterns were resolved by a smaller grid
 - <u>Extracts</u> kinetic energy from the circulation flow and <u>feeds</u> turbulence

representing the spectral kinetic-energy cascade

- > Additional shear production terms in TKE-equation due to scale interaction
- Missing link with particular value for the stable BL
- Often connected with the destruction of coherent circulation structures (de- and en-trainment)

- By means of the STIC-approach:
 - Source-term equilibrium for <u>Circulation Kinetic Energy (CKE)</u>:

Due to the impact of non-turbulent SGS circulations, STIC-terms allow for a physical solution of the turbulence scheme, even if shear production of TKE by the grid-scale flow is negligible:

Thermal effect of SSO (TSSO): (M. Raschendorfer)

2m-temperature [C] (at nocturnal conditions)

• Additional upward heat-flux overcompensates the turbulent warming at night

Running development related to the roughness-layer: (Matthias Raschendorfer)

- Consideration of roughness from inter-tile variability
 - Somewhat reduced Prandtl-layer resistance for momentum
 - Could be employed as a contribution to SSO as well
 - Not yet fully implemented
- Implicit treatment of surface-temperature
 - Linearization of surface processes with respect to temperature and linearly coupled to T_soil- and (multi-layer)
 T_snow-profiles of a <u>partial</u> snow-cover
 - Vertical diffusion between atm. model layers is forced by the tile-aggregated surface fluxes
 - Solves the problem of **oscillating T_surf and T_snow** at time steps of several minutes
 - Being merged from an ICON side branch
- Semi-transparent and mass-carrying R-cover
 - Number of semi-transparent material R-sublayers above the compact soil dependent on the total surface area index
 - Material R-sublayers vertically coupled by LRF and SHF
 - Partial shading of material R-sublayers further down and the soil
 - Evapotranspiration with regard to T_0, \dots, T_n and a semi-parallel resistance chain
 - Interception, dripping and phase transitions of precip. prepared
 - Being integrated into ICON from a COSMO test-version

Strong impact on diurnal cycle of T2m and Td2m !!

Case study in COSMO-DE: Testing an existing prototype of a

mass-carrying and semi-transparent canopy:

- Experiment with the existing test-version in COSMO for an quasi-ideal test case:
 - COSMO-DE with lateral boundaries from ICON-EU
 - o domain averaged daily cycles of near-surface variables
 - almost saturated soil due to long standing rain period before
 - only for rather smooth surfaces: applied filter
 - almost no clouds due to high pressure situation + applied filter

conditional diagnostic

full C-layer treatment : semi-transparent + loosely coupled + heat-storage + adapted evapo-transpiration

Matthias Raschendorfer

Coupled system of linearized heat equations with implicit temperature treatment:

<u>Test-grid-point Kenia (+33.71_+7.89) (already shown earlier) :</u>

- After-noon situation; tropical hot with strong radiation forcing
- 3 hour ICON-global test-run (R2B6) with defaults of the new SAT/TERRA-scheme (dt=6 min)
- Non-default settings only for the special grid-point:

- Oscillations almost completely eliminated by <u>new implicit treatment</u> of surface processes.
- So far operational flux-limiter switched off only for new treatment.

Matthias Raschendorfer

Prepared development related to the roughness-layer:

- Vertically resolved atmospheric land-use R-layer
 - Principal related problem for numerical simulation:

 $\overline{\nabla\zeta} = \nabla\overline{\zeta} + \overline{\nabla'\zeta'}$

if model layers are intersected by R-elements or layer-surfaces have got SGS slopes

e.g. form-drag in case of pressure-gradient \iff wake-production of TKE

- Two Paradigms:

Thank you for your attention!