

Neighborhood-based CRPS

J. Stein and F. Stoop DirOP/COMPAS Météo-France EWGLAM 30/09/2021

- Presentation of the neighborhood and CRPS
- Inclusion of the neighborhood in the CRPS
- Comparison of probabilistic and deterministic QPF
- Conclusions

L	FA	

1 MISS

1 Cor Rej

1 Cor Rej

1 MISS

1 Cor Rej

Classical Tables of contingency

RÉPUBLIQUE FRANÇAISE Liberté Exacteminité

Reward forecasts of events spatially slightly misplaced

Classical Tables of contingency

FSS (Robert and Lean 2008) and BSS (Amodei and Stein 2009)

- Presentation of the neigborhood and CRPS
- Inclusion of the neighborhood in the CRPS
- Comparison of probabilistic and deterministic QPF
- Conclusion

RÉPUBLIQUE FRANÇAISE Liberte Exercise Exercis Exercise Exercise Exercis Exercise Exercise Exercise Exe

RÉPUBLIQUE FRANÇAISE METEO FRANÇAISE CRPSno : comparison at the neighborhood scale

- Presentation of the neigborhood and CRPS
- Inclusion of the neighborhood in the CRPS
- Comparison of probabilistic and deterministic QPF
- Conclusion

- **ARPEGE** : hydrostatic global model ; 5 km over France
- PEARP : 35 hydrostatic global forecasts ; 7,5 km over France ; Singular vectors + EDA and 10 physics
- AROME : non-hydrostatic LAM nested in ARPEGE ; 1.3 km over France
- PEAROME : 16 non-hydrostatic forecasts nested in PEARP ;
 2,5 km over France ; EDA and stochastic physics
- ANTILOPE : data fusion between french radar observations and raingaujes ; 1 km grid over France
- Verification of QPF accumulated during 3 hours on the same grid (2,5 km) : from 01 october to 31 december 2019 over France

C C C C RANCE 2 CRPS for the 3 months period valid at D+1 18 UTC

RÉPUBLIQUE FRANÇAISE

Liberté Égalité Fraternité

RÉPUBLIQUE FRANÇAISE Librit Examples Valuentie Evaluentie Evaluentie

METEO FRANCE

- Developpement of a neighborhood-based CRPS using the regional CDF.
- Deterministic limit of CRPS comparable to CRPS for the ensembles of forecasts.
- CRPSso => impact of enlarging the number of members by using neighboring points to improve the CDF at the central point.
- CRPSno => comparison of observed and forecast CDF at the scale of the neighborhood.
- A large part of the double penalty is absorbed by using an ensemble of forecasts versus a deterministic forecast.
- Stein and Stoop (2021) submitted to Monthly Weather Review

RÉPUBLIQUE FRANÇAISE Librie Evalutie France

Reward forecasts of events spatially slightly misplaced

 Unfair estimator (u) of CRPS are obtained by using biased estimator of the dispersion => CRPSuso, CRPSuno

$$E_{X,X'}(|X-X'|) = \frac{1}{Members^2} \sum_{m=1}^{Members} \sum_{n=1}^{Members} |X(m)-X'(n)|$$

 Fair estimator (f) of CRPS are obtained by using unbias estimator of the dispersion => CRPSfso, CRPSfno

$$E_{X,X'}(|X-X'|) = \frac{1}{Members(Members-1)} \sum_{m=1}^{Members} \sum_{n=1}^{Members} |X(m)-X'(n)|$$

