

ACC and RD

Research and Development

LACE/HIRLAM Algorithmic Data Assimilation Developments

43rd EWGLAM - 28th SRNWP Meeting

27 September 2021 to 1 October 2021

Magnus Lindskog and Benedikt Strajnar

and LACE/HIRLAM DA Staff

Outline

- Introduction
- Handling of background errors
- Including host model information
- Flow-dependent data-assimilation algorithms
- Nowcasting
- Conclusions

Introduction

$ACC \cong RD$

A Consortium for COnvection-scale modelling Research and Development

- New vertical geometry for AROME/Hungary (90 instead of 60 levels, but still 2.5 km horizontal resolution).
- Tuning of observation- and background-errors has been carried out by applying the Desroziers' method.
- The sensitivity to the tuning was explored by comparing runs with different error tunings for the 90-level configuration (orange, green, red) with each other and comparing also with a 90 level configuration dynamical adaptation run (blue) and a run from the operational 60 level configuration (black).
- Tuning of the 90-level error characteristics has a clear impact on precipitation spin-up. However, there is still larger **spin-up when data assimilation is applied in the 90-level configuration** as compared with both dynamical adaptation in the 90 level configuration and data assimilation with the old operational 60 level configuration.

3-hour precipitation RMSE and bias for a 3 week summer period

Modelling domain and orography.

V. Homonnai et al. (OMSZ)

Exploiting the use of an operational ensemble for calculating a B-matrix for potential use in data assimilation

- Operational-like MEPS LAM EDA ensembles have been run for a one-month period to generate background error statistics.
- Operational-like MEPS LAM EDA ensemble uses ECMWF IFS ENS as LBC, which results in too much energy in large horizontal scales in the B-matrix.
- Modifying MEPS LAM EDA to use ECMWF EDA as LBC and modifying the way of using the LBC information in the LAM ensemble has a clear effect. It results in a horizonal background error spectra in better agreement with the operationally used B-matrix.
- The operationally used B-matrix derived applying LAM-EDA, but for a different period than the MEPS LAM EDA.

Evaluating the effect of introducing host model information through a J_k – term in cost function and of hydrometeor cycling

SLACE

nwp central europe

Taking host model information into account by introducing a Jk- term in the cost function has a clear impact on reduced spin-up (Figure to the right).

> $\min J(x) = J_b + J_o + J_k$ $= \frac{1}{2}(x-x_b)^{\mathrm{T}}\mathbf{B}^{-1}(x-x_b) + \frac{1}{2}(y-\mathbf{H}x)^{\mathrm{T}}\mathbf{R}^{-1}(y-\mathbf{H}x) + \frac{1}{2}(x-x_c)^{\mathrm{T}}\mathbf{C}^{-1}(x-x_c)$

Cycling of hydrometeors has a positive impact on upper-air forecast scores up to 20 h (Figures below).

REF GFL cycling Jk Jk + GFL

STD and Bias for WSPD at 850 hPa

STOV nGn I

Traditional J_k – formulation with additional term in cost function:

$$\begin{array}{l} \mathsf{n} \, J(x) \;=\; J_b + J_o + J_k \\ \;=\; \frac{1}{2} (x - x_b)^{\mathrm{T}} \mathbf{B}^{-1} (x - x_b) + \frac{1}{2} (y - \mathbf{H} x)^{\mathrm{T}} \mathbf{R}^{-1} (y - \mathbf{H} x) + \frac{1}{2} (x - x_c)^{\mathrm{T}} \mathbf{C}^{-1} (x - x_c) \end{array}$$

New approach under development and testing:

Method

we define

$$\widetilde{x_b} = \mathbf{C}(\mathbf{B} + \mathbf{C})^{-1}x_b + \mathbf{B}(\mathbf{B} + \mathbf{C})^{-1}x_c$$

and

$$\widetilde{\mathbf{B}} = \mathbf{B}(\mathbf{B} + \mathbf{C})^{-1}\mathbf{C} = \mathbf{C}(\mathbf{B} + \mathbf{C})^{-1}\mathbf{B}, \qquad \widetilde{\mathbf{B}}^{-1} = \mathbf{B}^{-1} + \mathbf{C}^{-1}$$

then

$$J(x) = \frac{1}{2}(x - \widetilde{x_b})^{\mathrm{T}}\widetilde{\mathbf{B}}^{-1}(x - \widetilde{x_b}) + \frac{1}{2}(y - \mathbf{H}x)^{\mathrm{T}}\mathbf{R}^{-1}(y - \mathbf{H}x)$$

meaning that (at least theoretically) the minimization can be performed without the extra J_k term explicitly present, provided

- we pre-mix x_b and x_c into a new background term $\widetilde{x_b}$
- lacksim we use a modified background error covariance matrix $\widetilde{f B}$

Not necessarily any simpler for a completely general \mathbf{C} .

Example of functionality

One single temperature observation +1K at 500 hPa, L24, $\rho(0) = 0.4, \rho(K-1) = 3$.

hPa

Multi-incremental formulation

Verification scores for a one-month 3D-/4DVar comparison

Conclusions and Outlook

- An operationally feasible 4D-Var available (different parts in single precision)
- Daily runs in operational environment
- Explore use in nowcasting
- Further enhancements planned

J. Barkmeijer et al. (KNMI)

HYBRID EN-VAR

Introducing ensemble information into the variational data assimilation through an α control variable

$$J(\delta \boldsymbol{x}_{\text{var}}, \boldsymbol{\alpha}) = \beta_{\text{var}} J_{\text{var}}(\delta \boldsymbol{x}_{\text{var}}) + \beta_{\text{ens}} J_{\text{ens}}(\boldsymbol{\alpha}) + J_{\text{o}}$$

- 20+1 ensemble members
- Compare HYBRID EN-(3D)VAR using ensembles generated with different techniques on EDA, BRAND, BREND
- Different localisation scales
- Visualisation of structures

E 1h RUC (1.3 km) compared to operational 3h cycling (4.4 km)

Results from a one-month winter-period parallel run

Modelling domain and 1h accumulated precipitation for one particular case

blue – improvement of hourly vs. 3h cycle - winter

Scorecard

B. Strajnar (ARSO) Significantly better at screen level, slightly worse for cloudiness/upper air fields

LACE Comparing 1h/2h/3h DA-cycles at same model resolution nwp central europe Summer Autumn Spring std and bias rmse and bias std and bias RMSE RUC3 1.5 2.5 260 k750_3_0 18000 0.0 BIAS RUC2 240 2.0 BIAS RUC3 1h cycling 1h cycling 0.4 220 16000 deg C 0.5 200 2h cycling 0.2 2h cycling 180 1h cycling 1.0 14000 **3h cycling** 0 3h cycling 160 1+3h cycling 0.5 -0.2 140 -0.5 12000 120 0.0 3h cycling -0.4 100 -1 -0.6 10000 3 6 9 12 3 0 1 2 3 4 10 11 12 13 14 15 16 17 18 Forecast length (h) Forecast length (h) Forecast length (h)

Short range two-meter temperature scores in general better with 1h cycling (not the same for short range forecasts of moisture variables)

No benefit for this summer period of 1 upper-air DA and 3h surface DA cycle

E. Harney, X. Yang, K. Szanyi et al. (Met Eireann, DMI, OMSZ)

Nowcasting

On-going work and plans

- Exploiting and optimizing time-filtering through initialisation approaches.
- Assimilation procedures adopted to nowcasting.
- Improved use of cloud products (machine learning, optical thickness).
- Methods for handling/initialisation of hydrometeors.
- Various studies of spin-up and sensitivity to observation usage etc.
- A framework for sub-hourly data assimilation cycles is being set-up.

C. Ceigo, F. Meier., K. Szanyi et al. (ZAMG), S. v. Veen, E. Gregow, T. Landelius, C. Pederssen, A. Stanešić, O. Vignes, M. Dahlbom, J. Bojarova, J. Barkmeijer, B. Stranjar, X. Yang, U. Andrae et al.

Conclusions

- An operationally feasible 4D-Var has been developed.
- There is on-going work towards bringing data-assimilation and operational ensemble system closer together.
- Taking host model information into account in data assimilation procedure can lead to more balanced initial states and shorter scale analysis increments.
- Encouraging results were obtained with 1h-RUC, although there are remaining challenges.
- LACE and HIRLAM are working increasingly closer together with upper air data assimilation developments within the newly formed ACCORD consortium.

