

A Consortium for COnvection-scale modelling Research and Development

Meteorological quality assurance in ACCORD

ACCORD Strategy Workshop Feb. 2020

Uses of meteorological quality assurance:

- monitoring the quality of the operational NWP systems from cycle to cycle
- verification in support of model development
- feedback between developers and users
- several canonical configurations: AROME, ALARO, HARMONIE-AROME
- very large number of different systems: models, resolution, domains, coupling, ensembles, use of observations
- questionnaire about quality assurance has been launched; answers are coming in

Cooperation:

methods, practices, software, data; 5 strategic goals

ACCORD Strategy Workshop Feb. 2020

Strategic goals for Meteorological Quality Assurance

- 1. jointly developed Harp verification system
- 2. develop common methods/metrics for high-resolution spatial-temporal verification and high impact weather.
- 3. enhance the verification of 3/4D physical processes to aid model development, including the necessary observations
- 4. exploit synergies with data assimilation wrt. observation usage
- 5. enhance the user-developer interaction

Common verifiaction software

Strategic goal 2021-2025:

Make the jointly developed Harp verification system attractive as a common verification tool

- Hirlam-Aladin R Package for verification: harp
- https://github.com/harphub/harp
- deterministic scores, probabilistic scores, spatial methods, ensemble-calibration, visualization,...
- flexible regarding input

Common verification engine: harp

- Harp: a suite of packages for reading, manipulating and analysing meteorological and climate data in R.
- harpIO: read and write meteorological and climate data. Can handle grib, NetCDF, FA, vfld/vobs, OPLACE, SQLite; sub-hourly lead times
- harpPoint: point verification for deterministic and ensemble forecasts, new block bootstrapping for arbitrary pooling of data
- *harpSpatial*: spatial verification for deterministic forecasts (FSS, SAL)
- harpVis: visualization of meteorological / climate data + web browser app(s) for visualization, charts, graphs, score cards
- harp: all packages together

harp user support

- Tutorial: https://harphub.github.io/harp-tutorial/index.html
- Slack channel: https://harp-network.slack.com/
- **Training course**: 2022, announcement in slack

harp user support


Training course, themes

- Data structures in harp
- Reading forecasts and observations
- Point verification
- Spatial verification
- Statistical significance and score cards
- Plotting forecast / verification data
- harp and the tidyverse
- Advanced harp: conditional verification, joint probabilities, observation errors and verification for grouped data,...
- Contributing to harp

harp application

Operational verification at many institutes, including MetCoOp; here monthly summary scores for MEPS and IFS ENS:

Quality measures

Strategic goal 2021-2025:

Further develop common methods/metrics, with a focus on methods for **high density/resolution** spatial-temporal verification and **high impact** weather

Two recent developments are introduced in the present session:

- "Neighborhood-based CRPS" by Joël Stein
- "Precipitation extremes in NWP: some results from spatial verification in DMI" by Bent Hansen Sass

verification to aid model development

Strategic goal 2021-2025:

Enhance the verification of 3/4D physical processes to aid model development, including the necessary observations

- help in assessing how well the models are able to represent complex physical processes and their interactions
 - increase the use of remote sensing data and retrieval products which offer good potential for process verification
 - make use of observatories/super-sites
 - encourage the use of tools such as DDH and Musc
 - encourage (participation in) model intercomparison exercises
- an example of combining DDH and data from Sodankylä observatory in Finland will be given by Marvin Kähnert in the u/a physics break out session

data and synergies with data assimilation

Strategic goal 2021-2025:

Consider greater synergies with the DA team on observation uses and quality control

- esp. crowd source data, eg TITAN
- more examples of novel data usage by Simona Tascu in the present session
- only a small fraction of the data which are assimilated, are also used for verification
 - what can we gain from applying methods of data assimilation for assessing forecasts of arbitrary range?
 - ob-forecast statistics for different observation types?
 - cost function (pseudo Jb)?
 - a way to summarize validation experiments?

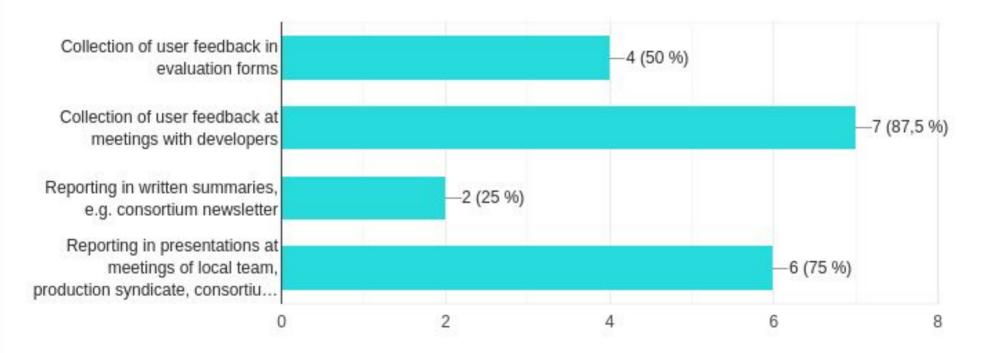
User-developer interaction

Strategic goal 2021-2025:

Enhance the user-developer interaction

- interaction mainly locally
- user developer
 - needs, experiences collected in summary reports locally and by CSC
- developer user
 - model strengths, weaknesses, coming developments
 - new capabilities: e.g town variables such as UTCI, energy demand for heating, cooling
- need for consortium wide meetings

Thank you for your attention!


User-developer interaction

Questionnaire on meteorological quality assessment (ongoing):

Collecting feedback from users

Describe procedures for collecting and storing the experience of duty forecasters and other users. How are these findings used in research and development?

8 svar

