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ECMWF Strategy: Science and technology goals for 2030

A seamless Ensemble Earth system 
maximising the use of current and upcoming observations 
through consistent and accurate modelling 
with realistic water, energy and carbon cycles.

Use of advanced high-performance computing 
big data and AI methodologies 
to create a Digital Twin of the Earth 
with a breakthrough in realism. 



Earth System Science  :  moving forward

Further enhanced NWP-Copernicus
synergies and convergence

Reduced model biases 
resulting in improved 
predictions on all 
timescales

Extra earth system 
complexity for improved 
meteorological 
predictions
(e.g. transition seasons)

Consistent DA approaches
across earth system components

Optimal DA coupling
across earth system 
components

Improved interface 
modelling
for near-surface weather



Machine Learning has been part of ECMWF forecasts for many years



And now planning to revolutionize the full NWP workflow… 



Ready for the challenge



ECMWF’s machine learning roadmap



Supporting Roadmap I
Centre of Excellence (COE) in Weather & Climate Modelling

Aim
• develop new techniques to support next-generation weather 

forecasting
• help boost climate and weather discovery and innovation
• prepare ECMWF for future HPC and data handling architectures.



October 29, 2014

The European Weather Cloud aims to become the cloud-based collaboration platform 

for meteorological application development & operations in Europe and 

contributes to the digital transformation of the European Meteorological Infrastructure

"a community cloud"

ECMWF Strategy 
2021-2030

Supporting Roadmap II: Infrastructure



The first benchmark datasets have been published! 

Supporting Roadmap IIIa: H2020
The MAELSTROM project



Cyclone tracks 
from “IB-tracks”

Predicted 
Cyclone centers
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Forecast (or satellite) fields

• ECMWF, NOAA and NVIDIA collaboration

Supporting Roadmap IIIb: H2020 & Partnerships
Towards pre-operational machine learning tropical cyclone detection



Supporting Roadmap IV: Innovation Programme
European Summer of Weather Code



Supporting Roadmap V: YOU

Check website under Jobs
Member State workshops organized by Peter Dueben
(all questions to him!) 



Infero
SPARTACUS emulation

Planned Ongoing Published

Unstructured 
grids / COE

Observation 
operators

CAMS emulator

NOGWD emulation / 
Oxford

ecRad emulation
S2S 
prediction 
correction

Bias correction 
in 4D-Var in 3D

Tropical 
Cyclone 
detection

ecPoint / 
HighlanderSoil moisture 

assimilation

MAELSTROM 
co-design cycle

Sea ice 
surface 
emissivity

Ensemble post
processing

Learn and understand 
model error from 
observations

Wave model 
emulation

Precipitation 
downscaling

Precipitation 
downscaling

Bias correction 
in 4D-Var

Learn machine 
learning model in 4D-
Var

Low dimensional 
ocean models

ML4Land

CliMetLab

S2S Challenge / 
WMO

Observation 
quality control

Anomaly 
detection

Estimates of the 
first guess of 
model error in 
OOPS

Wildfire prediction

AI4Emissions

TL/AD of 
emulator for 
4D-Var / Sam

Neural Network 
preconditioner

Study tropical cyclone 
genesis

Assimilate 
scatterometer
backscatter

Tropical Cyclone Tracking 
with CliMetLab

Fastem-7 for RTTOV ocean 
emissivity

Lookdown induced NO2 
changes

Status of machine learning at ECMWF



To emulate the 3D cloud effect in radiation

To represent 3D cloud effects for radiation (SPARTACUS) within simulations of the Integrated Forecast Model is 
four time slower than the standard radiation scheme (Tripleclouds)

Can we emulate the difference between Tripleclouds and SPARTACUS using neural networks?

Tripleclouds SPARTACUS Neural Network Tripleclouds+Neural Network

Relative Cost 1.0 4.4 0.003 1.003



16EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Example: 2m temperature, Winter 2020, 1 year of training data

Root-Mean-Squared Error (RMSE) with respect to station measurements (SYNOP).
All stations (left) – Individual stations change (below)

Machine learning applied to forecast 2m temperature and 10m wind
Fenwick Cooper, Zied Ben Bouallegue, Matthew Chantry, Peter Düben, Peter Bechtold, Irina Sandu

Better

Worse

oC



The strength of a common goal



The strength of a common goal

Machine learning for weather predictions

Peter Dueben

Royal Society University Research Fellow & ECMWF’s Coordinator for Machine Learning and AI Activities

The ESIWACE, MAELSTROM and AI4Copernicus
have received funding from the European Union
grant agreement No 823988, 955513 and 101016798

research used resources of the Oak Ridge
Leadership Computing Facility (OLCF), which is a DOE

Science User Facility supported under Contract
00OR22725.



Let’s start with definitions

Artificial intelligence (AI) is intelligence demonstrated by machines, in 
contrast to the natural intelligence displayed by humans (Wikipedia)
Example: A self-driving car stops as it detects a cyclist crossing

Machine learning (ML) is the scientific study of algorithms and statistical 
models that computer systems use to perform a specific task without using 
explicit instructions… (Wikipedia)
Example: To learn to distinguish between a cyclist and other things from data

Deep learning is part of a broader family of machine learning methods
based on artificial neural networks (Wikipedia)
Example: The technique that is used to detect a cyclist in a picture

Machine learning

Artificial intelligence

Deep
learning



Deep learning and artificial neural networks as one example of machine 
learning

The concept:
Take input and output samples from a large data set
Learn to predict outputs from inputs
Predict the output for unseen inputs

The key:
Neural networks can learn a complex task as a “black box”
No previous knowledge about the system is required
More data will allow for better networks

The number of applications is increasing by day:
Image recognition
Speech recognition
Healthcare
Gaming
Finance
Music composition and art
…

And weather?



Decision trees and random forrests

Decisions fork in tree structures 
until a prediction is made.

“Random forest” methods are 
training a multitude of decision 
trees using a mean predictions 
or the value with the most hits as 
a result. 

Decision trees are often fast and 
accurate and they are able to 
conserve some of the properties 
of the system.

Decision trees often require a lot 
of memory (as they serve as an 
efficient look-up table).

Hewson and Pillosu 2020

An example for ecPoint:



Two families of machine learning

Source: https://medium.com/@recrosoft.io/supervised-vs-unsupervised-learning-key-differences-cdd46206cdcb



Why would machine learning help in weather and climate 
predictions?Predictions of weather and climate are difficult:

The Earth is huge, resolution is limited and we cannot represent 
all important processes within model simulations

The Earth System shows “chaotic” dynamics which makes it 
difficult to predict the future based on equations

All Earth System components (atmosphere, ocean, land surface, 
cloud physics,…) are connected in a non-trivial way

Some of the processes involved are not well understood

However, we have a huge number of observations and Earth 
System data

There are many application areas for machine learning in 
numerical weather predictions



Increase in data volume
New computing hardware
New machine learning software
Increase in knowledge

Why is machine learning so hip at the moment?

Slide from Torsten Hoefler (ETH)

Bauer et al. ECMWF SAC paper 2019



What will machine learning for numerical weather and climate predictions
look like in 10 years from now?
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The uncertainty range is still very large...



Can we replace conventional weather forecast systems by deep learning?

We could base the entire model on neural networks and trash the conventional models.?
There are limitations for existing models and ECMWF provides access to hundreds of petabytes of data

A simple test configuration:
We retrieve historical data (ERA5) for geopotential at 500 hPa (Z500) for the last decades
(>65,000 global data sets)
We map the global data to a coarse two-dimensional grid (60x31)
We learn to predict the update of the field from one hour to the next using deep learning
Once we have learned the update, we can perform predictions into the future

No physical understanding is required!

Dueben and Bauer GMD 2018 



Dueben and Bauer GMD 2018 

Time evolution of Z500 for historic data and a neural network prediction.
Can you tell which one is the neural network?

The neural network is picking up the dynamics nicely.
Forecast errors are comparable if we compare like with like.
There is a lot of progress at the moment.
Scher and Messori GMD 2019; Weyn, Durran, and Caruana JAMES 2019; Rasp and Thuerey 2020…

Is this the future for medium-range weather predictions?

Unlikely… 
The simulations change dynamics in long integrations and it is unclear how 
to fix conservation properties. 
It is unknown how to increase complexity and how to fix feature interactions.
There are only ~40 years of data available.

Can we replace conventional weather forecast systems by deep learning?



hour MetNET precipitation predictions by Google: 
Agrawal, Barrington, Bromberg, Burge, Gazen, Hickey arXiv:1912.12132

NOAA forecast             Ground truth              Machine learning:

Deep learning for multi-year ENSO forecasts: Ham, Kim, Luo Nature 2019

And climate?

Can we replace conventional Earth System models by deep learning?



Infero / 
Antonino and 
Tiago

SPARTACUS emulation / 
Reading and Robin

Planned Ongoing Published

Unstructured 
grids / COE

COE == Centre of Excellence with ATOS and NVIDIA
ESoWC == ECMWF Summer of Weather Code

Observation 
operators / 
Jesper

CAMS emulator 
/ Mihai

NOGWD emulation / 
Oxford, Mat

ecRad emulation / 
MAELSTROM, Mat and RobinS2S 

prediction 
correction / 
Jesper

Bias correction 
in 4D-Var in 3D 
/ COE, Patrick

Tropical 
Cyclone 
detection / 
COE, Antonino,

ecPoint / 
Highlander, 
Tim, and 
Fatima

Soil moisture 
assimilation / 
Patricia, Pete, 
CNRS

MAELSTROM 
co-design cycle 
/ Mat

Sea ice 
surface 
emissivity / 

Ensemble post
processing / 
Microsoft, 
Jonathan and 
Zied

Learn and understand 
model error from 
observations / IFAB, 
Fenwick and Zied

Wave model 
emulation / 
Oxford and 
Jean

Precipitation 
downscaling / 
Oxford, Mat

Precipitation 
downscaling / 
Warwick and 
Bristol

Bias correction 
in 4D-Var / 
Massimo, 
Patrick

Learn machine 
learning model in 4D-
Var / Fellow Bocquet, 
Massimo

Low dimensional 
ocean models / 
Imperial College

ML4Land / 
ESoWC, Joe

CliMetLab / 
Florian

S2S Challenge / 
WMO, Frederic, 
Florian

Observation 
quality control / 
Mohamed

Anomaly 
detection / 
ESoWC, 
Matthew 

Estimates of the 
first guess of 
model error in 
OOPS / Marcin

Wildfire prediction 
/ Ruth, Francesca, 
Claudia

AI4Emissions / 
ESoWC, Joe

TL/AD of 
emulator for 
4D-Var / Sam

Neural Network 
preconditioner / Oxford

Study tropical cyclone 
genesis / CLINT, Linus

Assimilate 
scatterometer
backscatter / 

Tropical Cyclone Tracking 
with CliMetLab
/ Pedro

Fastem-7 for RTTOV ocean 
emissivity / CNRS, Stephen

Lookdown induced NO2 
changes / Jerome

Status of machine learning at ECMWF



How bad is it to use machine learning in a changing climate?lopments

Let’s train a machine learning tool in a changing climate
Let’s start simple to be able to make clear statements → The Lorenz’63 model
Let’s take two different approaches to learn the model from a truth trajectory:
1. Echo State Networks (Vlachas et al. 2020 and Chattopadhyay et al. 2020)
2. Domain-Driven Regularized Regression (D2R2; Pyle et al. 2021)
Let’s assume that today’s climate is the “left-lobe regime” and that climate change is kicking us into the 
“two-lobe regime”.
What if we only train from 1%, 2%, 5%… of the training data from the right lobe?

Pyle, Chantry, Palem, Palmer, Dueben, Patel



Echo State Network Regression Technique (D2R2)

The Echo State Network performs horrible unless you provide at least 10% of the data of the right lobe.
The regression technique needs a very small amount of the right lobe to perform well.

Physics informed machine learning, explainable AI and trustworthy AI need to be explored.

Pyle, Chantry, Palem, Palmer, Dueben, Patel

Science and tool developments



How can you build trust in machine learning tools and make them 
reliable?
Trustworthy AI, explainable AI and physics informed machine learning

There are several ways to incorporate physical knowledge into machine learning tools:
Formulate the machine learning problem in a way that makes it physical (e.g. heating rate/fluxes for radiation)
Change the architecture of the neural network
Close the budget for the output variables or correct the outputs to fulfil the constraint 
Incorporate physical constraints into the loss function that is used for training

There are also ways to evaluate whether the machine learning solution is reproducing the right physics
Consider specific use cases and weather regimes
Perform sensitivity tests on the inputs or outputs
Test for physical reasoning (e.g. for extreme events)

Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).

McGovern, et al. Making the Black Box More Transparent: Understanding the Physical Implications of Machine Learning, Bulletin 
of the American Meteorological Society, 100(11), 2175-2199 (2019)



Can we represent scale interactions with machine learning tools?

Source: UCAR

Machine learning:
Neural network tools allow for encoding/decoding structures

Weather and climate modelling:
Tools need to allow for scale interactions

Can we use encoder/decoder networks to represent scale interactions?

Source: https://towardsdatascience.com



Precipitation down-scaling

Problem: Learn to map weather predictions from ERA5 reanalysis data at ~50 km resolution to E-OBS 
local precipitation observations at ~10 km resolution over the UK.

Use case: Eventually, apply the tool to climate predictions to understand changes of local precipitation 
pattern due to climate change. 

Method: Use Tru-NET with a mixture of ConvGru layers to represent spatial-temporal scale interactions 
and a novel Fused Temporal Cross Attention mechanism to improve time dependencies.

Adewoyin, Dueben, Watson, He, Dutta http://arxiv.org/abs/2008.09090

Model RMSE

Conventional forecast model 3.627

Hierarchical Convolutional GRU 3.266

Tru-Net 3.081



How to use machine learning?

It is often better to not replace the full system but rather to learn the “delta” of the most expensive or 
uncertain dynamics: No “all-in” but hybrid; no signal but delta
Watson, P. A. G.: Applying machine learning to improve simulations of a chaotic dynamical system using 
empirical error correction. Journal of Advances in Modeling Earth Systems, 11, 1402– 1417, 2019

It is often a good idea to learn the error since it is not “physical” and often measurable
Bonavita, M., & Laloyaux, P.: Machine learning for model error inference and correction. Journal of Advances in 
Modeling Earth Systems, 12, e2020MS002232, 2020

If you can learn the error, you can also learn the uncertainty representation 
For example via dropout techniques, variational autoencoders or generative adversarial networks
Leinonen, J., Guillaume, A., & Yuan, T.: Reconstruction of cloud vertical structure with a generative adversarial 
network. Geophysical Research Letters, 46, 7035– 7044, 2019
See Hannah’s talk

Tripleclouds SPARTACUS Neural

Network

Tripleclouds

+ Neural Network

Relative 1.0 4.4 0.003 1.003

Meyer, Hogan, Dueben, Mason https://arxiv.org/abs/2103.11919



HPC efficiency and machine learning at scale

To make efficient use of today’s high performance computing hardware is tricky. Only a small number of 
today’s models can run on GPUs and most of the models run at <5% of the available peak performance.

Deep learning tools are mostly based on dense linear algebra and reduced numerical precision.
NVIDIA TensorCore on V100 GPUs perform matrix-matrix multiplications with:

8 TFlops for double precision
125 TFlops for half precision

The first machine learning application in weather and climate modelling has reached the exa-scale.
Thorsten Kurth et al.: Exascale deep learning for climate analytics. In Proceedings of the International Conference 
for High Performance Computing, Networking, Storage, and Analysis (SC '18). IEEE Press, Article 51, 1–12, 2018. 
Gordon Bell Prize!

ow much will we be able to learn when training from 1 petabyte of data using petascale supercomputing?



Conclusions

There are a large number of application areas throughout the prediction workflow in weather and 
climate modelling for which machine learning can make a difference.

The weather and climate community is still only at the beginning to explore the potential of 
machine learning (and in particular deep learning) at scale and there are challenges to be faced.

However, an approach that combines collaborations, meetings, scientific studies, targeted 
projects, shared datasets, software and hardware developments should allow us to overcome 
most of the challenges in the medium-term future. 

Please do not forget to register for the ESA-ECMWF Workshop on Machine Learning for 
Earth System Observation and Prediction – 15-18 November – https://www.ml4esop.esa.int/

Many thanks!  Peter.Dueben@ecmwf.int @PDueben



A(z) rId3 azonosítójú képrész nem található a fájlban.

The strength of a common goal



Machine learning in three communities

How did the view on machine learning change from 2018 until today?

The bold Machine Learning scientist:
“Machine learning will replace everything”     

“Machine learning will replace everything, look here…”

The HPC hardware developer:
“Machine learning will dominate future HPC developments”     

“Here is our new machine learning hardware, please use it”

The sceptical weather and climate domain scientist:
“Machine learning is just a wave going through…”    

“Machine learning is just a method…”

But there is still more that can be done with customised machine learning tools that are easy to use at scale.



Challenges for machine learning in weather and climate modelling

Different sets of tools for domain (Fortran on CPUs) and machine learning scientists (Python on GPUs)
→ Training and tool development (e.g. CliMetLab)

Off-the-shelf machine learning tools are often not sufficient for weather and climate applications
→ Science, benchmark datasets and tool developments

Training datasets are often not good enough while the data size is huge
→ Benchmark datasets

We still need to learn how to scale up to petascale supercomputers to make the most of machine learning
→ Projects such as MAELSTROM and benchmark datasets

Integration of machine learning tools into the conventional numerical weather prediction workflow is difficult
→ Science and tool developments (e.g. Infero)

Machine learning tools need to be updated in model cycles
→ Science (e.g. Transfer Learning)

Machine learning tools need to be reliable (extrapolating?) for use in operational predictions
→ Science (e.g. explainable AI, trustworthy AI or physics-informed networks)



Tropical cyclone intensity (core pressure) bias
Red: Single precision and 137 vertical levels
Blue: Double precision and 91 vertical levels

Dueben and Palmer 2014 → Lang et al. submitted to QJRMS

Model configuration Relative Cost

Double precision 91 levels 100%

Single precision 91 levels 57.9%

Double precision 137 levels 155.5%

Single precision 137 levels 87.5%

Single precision is used for operational 
predictions at ECMWF since May 2021

The change from double to single precision and 
from 91 to 137 vertical levels allows to reduce 
costs and improve predictions

Can we use deep learning hardware for conventional models?

A new operational model configuration:



Can we use deep learning hardware for conventional models?

• Machine learning accelerators are focussing on low numerical precision and high floprats.
• Example: TensorCores on NVIDIA Volta GPUs are optimised for half-precision matrix-

matrix calculations with single precision output. 
→ 7.8 TFlops for double precision vs. 125 TFlops for half precision

Can we use TensorCores within our models?

Relative cost for model components for a non-hydrostatic model at 1.45 km resolution:

• The Legendre transform is the most expensive kernel. It consists of a large number of 
standard matrix-matrix multiplications. 

• If we can re-scale the input and output fields, we can use half precision arithmetic.



Half precision Legendre Transformations

Root-mean-square error for geopotential height at 500 hPa at 
9 km resolution averaged over multiple start dates. Hatfield, 
Chantry, Dueben, Palmer Best Paper Award PASC2019

The simulations are using an emulator to reduce precision 
Dawson and Dueben GMD 2017) and more thorough 

diagnostics are needed.

Results from Sam Hatfield on Fugaku
(many thanks to Hirofumi Tomita!)
and from Milan Kloewer on Isambard 2



Challenges for machine learning in weather and climate modelling

Different sets of tools for domain (Fortran on CPUs) and machine learning scientists (Python on GPUs)

-the-shelf machine learning tools are often not sufficient for weather and climate applications

Training datasets are often not good enough while the data size is huge

We still need to learn how to scale up to petascale supercomputers to make the most of machine learning

Integration of machine learning tools into the conventional numerical weather prediction workflow is difficult

Machine learning tools need to be updated in model cycles

Machine learning tools need to be reliable (extrapolating?) for use in operational predictions



During data-assimilation the model trajectory is “synchronised” with observations 
Model error can be diagnosed when comparing the model with (trustworthy) observations

Approach: Learn model error for a given model state using machine learning

Benefit: Correct for model error and understand model deficiencies

Question: What happens when the model is upgraded and the error pattern change?

Solution: More work on transfer learning needs to be done

Machine learning for bias correction

Laloyaux, Dueben, Bonavita @ ECMWF + Kurth and Hall @ NVIDIA



To emulate parametrisation schemes

Method:
Store input/output data pairs of a parametrisation scheme
Use this data to train a neural network
Replace the parametrisation scheme by the neural network within the model

Why would you do this?
Neural networks are likely to be much more efficient and portable to 
heterogenous hardware

Active area of research: 
Chevallier et al. JAM 1998, Krasnopolsky et al. MWR 2005, Rasp et al. PNAS 2018, 
Brenowitz and Bretherton GRL 2018…

We emulate the non-orographic gravity wave drag within the Integrated Forecasting System (IFS) 
Chantry, Hatfield, Dueben, Polichtchouk and Palmer https://arxiv.org/abs/2101.08195

Results:
Nice relationship between neural network complexity and error reduction
Similar cost when used within IFS on CPU hardware and 10 times faster when used offline on GPUs 
Emulator was used successfully to generate tangent linear and adjoint code within 4D-Var data assimilation
Hatfield, Chantry, Dueben, Lopez, Geer, Palmer in preparation
Forecast error can be reduced when training with more angles and wavespeed elements



To precondition the linear solver
Linear solvers are important to build efficient semi-implicit time-stepping schemes for atmosphere and ocean models.
However, the solvers are expensive.
The solver efficiency depends critically on the preconditioner that is approximating the inverse of a large matrix. 

Can we use machine learning for preconditioning, predict the inverse of the matrix and reduce the number of 
iterations that are required for the solver?

Testbed: A global shallow water model at 5 degree resolution but with real-world topography. 
Method: Neural networks that are trained from the model state and the tendencies of full timesteps.

No preconditioner:                                  Machine learning preconditioner:         Implicit Richardson preconditioner:

It turns out that the approach (1) is working and cheap, (2) interpretable and (3) easy to implement 
even if no preconditioner is present.



Post-processing and dissemination: ecPoint to post-process rainfall predictions

Timothy Hewson and Fatima 

Use forecast data as inputs

Train against worldwide rainfall observations

Improve local rainfall predictions by accounting
for sub-grid variability and weather-dependent biases

Use decision trees as machine learning tool

Example: Devastating floods in Crete on 25 February 2019

Benefits: Earlier and more consistent signal with higher probabilities

D4

D4

D3

D3

D2

D2

D1

D1

Probability (%) > 50mm /12h

24h rain

POINT RAINFALL (post-processed)

RAW ENSEMBLE



To post-processing ensemble predictions

Ensemble predictions are important but expensive.
Can we improve ensemble skill scores from a small number of ensemble members via deep learning?

Use global fields of five ensemble members as inputs.
Correct the ensemble scores of temperature at 850 hPa and Z500 hPa for a 2-day forecast towards a full 10 
member ensemble forecast.



Probabilistic down-scaling

Map IFS model data at ~10 km resolution to NIMROD precipitation observations at ~1 km resolution
Test Generative Adversarial Networks (GANs) and Variational Autoencoders (VAs)
Generate ensembles to represent the uncertainty of the mapping.



Challenges for machine learning in weather and climate modelling

Different sets of tools for domain (Fortran on CPUs) and machine learning scientists (Python on GPUs)
→ Machine learning roadmap via training and tool development (e.g. CliMetLab)

Off-the-shelf machine learning tools are often not sufficient for weather and climate applications
→ Machine learning roadmap, MAELSTROM and COE via benchmark datasets and tool developments

Training datasets are often not good enough while the data size is huge
→ MAELSTROM via benchmark datasets

We still need to learn how to scale up to petascale supercomputers to make the most of machine learning
→ MAELSTROM via co-design cycle

Integration of machine learning tools into the conventional numerical weather prediction workflow is difficult
→ Science and tool developments, COE, and tool development (e.g. Infero)

Machine learning tools need to be updated in model cycles
→ Science and tool developments and COE via Transfer Learning

Machine learning tools need to be reliable (extrapolating?) for use in operational predictions
→ Science and tool developments


