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Why machine learning for parameterizations?
! Parameterization problem in atmospheric models: 

Find a nonlinear relation between resolved model variables x = (x1, x2, x3,…) 
and unresolved processes P = (p1, p2, p3, …) 
 
    P = f(x)  
 
using physical reasoning, measurements or benchmark simulations.

! Machine learning (supervised learning):  
Find a nonlinear relation between features x = (x1, x2, x3,…) and labels  
y = (y1, y2, y3, …)  
 
    y = f(x)  
 
using data (measurements or benchmark simulations).
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Bulk microphysics parameterizations
! Bulk microphysics parameterizations need to approximate integrals of the type 

 
 
 
 
This is the warm-rain autoconversion and x is particle mass, f(x) is the particle 
size distribution (PSD) and K(x,y) is the collision kernel. Similar integrals apply 
for accretion, riming and aggregation. 

! Traditionally there are 3 different approaches to parameterize these integrals 
1. Analytic parameterizations with an assumed PDF for f(x) 

2. Tabulated schemes with pre-calculated values using an assumed PDF for f(x) 
3. Regression models based on simulations with bin or particle-based models as 

data. In this case f(x) is provided by the benchmark simulation. 

! In some sense, ML-based bulk microphysics is simply a new workflow for a 
regression model.
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with a constant c and therefore similarity solutions of the form "̃ (x, t) = c" (x, ct) exist for each
solution f (x, t).

Atmospheric models do not necessarily predict f (x, t); instead, only partial moments of this distribution in
two size ranges are used, which are defined as

M(k)
c = ∫

x∗

0
xk" (x)dx, (4)

M(k)
r = ∫

∞

x∗
xk" (x)dx, (5)

and drops smaller than the mass x∗ = 2.6 × 10−10 kg are cloud droplets, and larger drops are raindrops.
M(0)

i = Ni is the number density, and M(1)
i = Li the mass density or cloud resp. rain water content. Depend-

ing on the number of moments that are used for each particle category, parameterizations are classified as
single-, double-, or triple-moment schemes. In the following, we focus on double-moment schemes with
the variables Nc, Lc, Nr , and Lr . It is straightforward to prove that the liquid water content L = Lc + Lr
is conserved by Equation 1 and the scaling constant c of similarity solutions can be identified as c = L̃∕L
(Drake, 1972).

The time evolution described by Equation 1 establishes a system of ODEs for the partial moments Nc, Lc,
Nr , and Lr given by

dLc
dt = −AU − AC, (6)

dLr
dt = + AU + AC, (7)

dNc
dt = −2AUN − ACN − SCc = − 2

x∗
AU − 1

x̄c
AC − SCc, (8)

dNr
dt = + AUN + ACN − SCr = + 1

x∗
AU − SCr , (9)

with the mean cloud droplet mass x̄c = Lc∕Nc. The autoconversion rate AU, the accretion rate AC, and
the two self-collection rates SCc and SCr are unknown, and to specify these process rates in terms of the
partial moments is known as the warm-rain parameterization problem. Note that we have already made
the approximation to couple the number rates of autoconversion and accretion, AUN and ACN , to the mass
rates (Beheng, 1994, 2010) by the assumption that autoconversion creates droplets of the mass x* and accre-
tion collects on average the cloud droplets with mass x̄c. All moments and the process rates are positive
semidefinite quantities. The time evolution of Lc is monotonically decreasing, because it has only sink terms.
Correspondingly, Lr increases monotonically.

The autoconversion rate AU and the accretion rate AC can be calculated directly from known solutions of
the kinetic equation by

AU = ∫
x∗

x′=0 ∫
x∗

x′′=x∗−x′
" (x′)" (x′′)K(x′, x′′)x′dx′dx′′, (10)

AC = ∫
x∗

x′=0 ∫
∞

x′′=x∗
" (x′)" (x′′)K(x′, x′′)x′dx′dx′′, (11)

and similar integral forms exist for SCc and SCr (Beheng, 2010; Doms & Beheng, 1986).

Having such data reduces the parameterization problem to a regression task and depending on the input
data and regression assumptions different parameterizations have been derived in the last decades (Beheng,
1994; Berry & Reinhardt, 1974; Khairoutdinov & Kogan, 2000). In the following, we will compare with the
double-moment parameterization of Seifert and Beheng (2001; SB2001 hereafter) given by

AUsb =
kc

20x∗
($ + 2)($ + 4)

($ + 1)2 L2
c x̄2

c

[
1 +

Φau(%)
(1 − %)2

]
, (12)
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ML-based microphysics development workflow
! Do reference simulations using a resolved microphysics. Here we use the 

super-particle method of Shima et al. (2009)
! The simulations should cover the whole range of physically plausible values, 

because the ML-based model is good for interpolation but quite bad for 
extrapolation.

! Calculate the bulk microphysical process rates like autoconversion or accretion 
based on the reference simulations.

! Train a neural network for each process rate. Here we can play with different 
sets of predictors.

! To validate the parameterization we solve the ODE system using the neural 
networks for the process rates and compare the solutions with the reference 
simulations.



Training the ML model
! We use the Keras/Tensorflow library to train an artificial neural network 

(multilayer perceptron). 
! Separate data in training, validation and testing data 
! Log transform of process rates (labels) and predictors (features) 
! Standardization of transformed variables. After this the predictors have  

a mean of zero and a standard deviation of one. 
! For warm-rain autoconversion possible predictors are: 

! cloud water content Lc 

! cloud droplet number Nc or drop mass xc 

! shape parameter nu 

! rain water content Lr 

! dimensionless time scale tau=Lr/(Lc+Lr)



Overview of training and testing data
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Table 1
Overview of the Training and Testing Data

Initial conditions
training (+ validation) testing

L0 [g m−3] 0.2, 0.4, 0.6, 0.8, 1.0, 2.0 0.3, 0.5, 0.7, 0.9, 1.5
r̄0 [μm] 9, 10, 11, 12, 13, 14, 15 9, 10, 11, 12, 13, 14, 15
" 0,1,2,3,4 0.5, 1.5, 2.5, 3.5
n 5 (+ 2) 5

potential predictors P (features)
AU AC SCc SCr

Lc, x̄c, ", Lr , # Lc, x̄c, ", Lr , x̄r , # Lc, Nc, x̄c, ", # Lr , Nr , x̄r , #

data reduction for label-feature vectors
AU AC SCc SCr

AU > $1 AC > $0 SCc > $0 SCr > $0
Pau > $0 Pac > $0 Psc, c > $0 Psc, r > $0
# < 0.85 # < 0.99 Lc > 10−4 g m−3 Lr > 10−4 g m−3

total number of samples after data reduction (without validation data)
AU AC SCc SCr

train test train test train test train test
179,133 114,312 316,141 185,956 365,705 220,119 309,151 181,247

Note. n is the number of ensembles using different random number seeds for the same initial condition.

data with rather irrelevant autoconversion labels, for example, when Lr ≫Lc. Even accretion becomes irrel-
evant when Lc is small. Hence, we can remove labels based on #, Lc, and Lr to focus the training on the
relevant part of the phase space.

As testing data, we use a separate set of simulations with different values of L0 and ". This makes sure that
the testing data are clearly separated from the training data. The selection of the training and testing data is
summarized in Table 1. The testing data span a marginally smaller range of initial conditions as the training
data. This means the ML models will, in some sense, only need to interpolate to achieve a good skill on the
testing data. This is sufficient here because cases that have lower L0 and/or smaller r̄0 are nonprecipitating
and will not produce rain by the warm-rain collision-coalescence process within reasonable time. Cases with
higher L0 and larger r̄0 rain so quickly that the error in the timing becomes irrelevant. The shape parameter
" is not a prognostic variable in a two-moment scheme and is set a priori and is usually within the range
shown here.

Finally, the training, validation, and testing data are standardized using the mean and standard deviation
to ensure that all features zero mean and a standard deviation of one. Hence, we apply the transformation
'̌ = ('−'̄)∕(' , where' is a feature vector with mean '̄ and standard deviation (' and '̌ is the standardized
value of the feature.

A subset of the training data before standardization is visualized by a pairs plot in Figure 2 showing AU
and the predictors Lc, x̄c, #, and ". This shows clearly that we have defined " = "0 as the shape parameter
of the initial conditions. Note that discrete values of, for example, " and x̄c, are artificially smeared out in
this plot by the kernel density estimator, which assumes a Gaussian distribution. It can also be seen that x̄c
does not change much, especially not for large ". This is explained by the fact that initially, only the tail of
the distribution is affected by collisional growth, but not the mean, and later accretion does collect all cloud
droplets. Only for broad distributions x̄c decreases during the final collection stage, because very small cloud
droplets are not collected efficiently by the raindrops (see, e.g., Figure S40).

5. The ML Models
To parameterize the process rates with ML, we train several small NNs. Each has three fully connected layers
with 16 nodes per layer. Each neural net has only a single output node corresponding to our choice to train a
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Simple fully connected neural net with 3 layers
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11.5.2020 McSnow_autocon_v2_01_16x16x16
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In [27]:

normed_train_stats4 = normed_train_data4.describe()
normed_train_stats4 = normed_train_stats4.transpose()
normed_train_stats4

The model

Build the model

In [28]:

def build_model(ncol): 
 model = keras.Sequential([ 
   layers.Dense(16, activation='tanh', input_shape=[ncol]), 
   layers.Dense(16, activation='tanh'), 
   layers.Dense(16, activation='tanh'), 
   layers.Dense(1) 
 ]) 

 optimizer = tf.keras.optimizers.RMSprop(0.001) 

 model.compile(loss='mse', 
               optimizer=optimizer, 
               metrics=['mae', 'mse']) 
 return model

In [29]:

model = build_model(3)

Inspect the model
Use the .summary  method to print a simple description of the model

Out[27]:

count mean std min 25% 50% 75% max

Lc 63614.0 -1.817187e-04 0.999998 -3.484517 -0.964097 -0.043618 0.780529 2.103707

Xc 63614.0 1.139750e-02 0.999946 -2.673791 -0.738537 0.032237 0.744499 1.465489

tau 63614.0 6.795145e-06 1.000004 -3.873875 -0.652627 0.199403 0.845304 1.292873

nu 63614.0 -9.211740e-09 0.999953 -1.272508 -0.560502 0.151503 0.863508 1.575513

11.5.2020 McSnow_autocon_v2_01_16x16x16

localhost:8888/nbconvert/html/McSnow_autocon_v2_01_16x16x16.ipynb?download=false 12/32

In [30]:

model.summary()

Now try out the model. Take a batch of 10  examples from the training data and call model.predict  on
it.

In [31]:

example_batch  = normed_train_data2[:10]
example_result = model.predict(example_batch)
example_result

It seems to be working, if it produces a result of the expected shape and type and no NaN.

Train the model
Use early stopping

Model: "sequential" 
_________________________________________________________________ 
Layer (type)                 Output Shape              Param #    
================================================================= 
dense (Dense)                (None, 16)                64         
_________________________________________________________________ 
dense_1 (Dense)              (None, 16)                272        
_________________________________________________________________ 
dense_2 (Dense)              (None, 16)                272        
_________________________________________________________________ 
dense_3 (Dense)              (None, 1)                 17         
================================================================= 
Total params: 625 
Trainable params: 625 
Non-trainable params: 0 
_________________________________________________________________ 

Out[31]:

array([[0.0849129 ], 
       [0.08562359], 
       [0.0885134 ], 
       [0.08943987], 
       [0.08966324], 
       [0.09907097], 
       [0.09980947], 
       [0.10109064], 
       [0.10159621], 
       [0.10183972]], dtype=float32)

The model has ~600 trainable parameters. 
Hence, overfitting should not be an issue.

We can play with the size of the NN and 
test different activation functions like 
tanh, sigmoid or ReLU.



Result of the machine learning step:
! Error measures against the testing data 

 
 
 
 
 
 
 
 
 
 

! Machine learning seems be able to improve over bulk schemes like SB2001 
! Including rain as predictor improves the autoconversion rate.
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Figure 4. Mean squared error (MSE) and mean absolute error (MAE) for autoconversion calculated against the
independent testing data. The ML models are compared with the parameterizations of SB2001, KK2000, and a power
law regression model.

minimization. This brings the SB2001 ansatz closer to the MAE and MSE of ML Models 3 and 4. KK2000 is
the parameterization of Khairoutdinov and Kogan (2000), which is of similar quality as ML Models 1 and
2 that also use only cloud variables. The model named “power” is a regression model using a power law
ansatz for Lc, Nc, and !, optimized using Levenberg-Marquardt minimization on the training data. This is
only marginally better than KK2000.

This seems to make little difference for the scores against the testing data, Model 5 is slightly worse than
Model 4, but Model 6 with x̄c − # has the best MAE and MSE against the testing data. The result can be
interpreted such that ML Models 3 and 4 are able to approximate those dependencies well enough from the
original data and do not benefit from a simplification of the problem when we remove these dependencies.
That Model 6 is better than Models 3 and 4 suggests that there are some issues with the generalization of
those two models to the testing data.

Figure 5 shows a similar comparison of ML models with SB2001 for accretion and both self-collection rates.
In general, we find that the use of additional predictors leads to an improvement of the models. The results
are ML models that provide a significant improvement over SB2001 (and KK2000 for accretion). The addi-
tional improvement from including # in the self-collection rates is small though. For accretion, it is not
necessarily favorable to include !, but this difference is not significant for our training and testing data. In
a full atmospheric model, one could hope that simpler parameterizations or ML models might generalize
better and drop those variables that provide only a marginal improvement.

In the following (sections 6 and 7), we use Lc− x̄c−#−! for autoconversion, Lc−Lr − x̄c− x̄r −! for accretion,
Lc − x̄c − ! − # for self-collection of cloud droplets, and Lr − x̄r for the self-collection of rain.

As a pure ML application, we would already be done at this point. The ML models can make skillful pre-
dictions of the process rates that are of similar quality, or even better, than standard parameterizations used
in atmospheric models. From the point of view of model development for NWP and climate models, on the
other hand, we want to go at least one step further and test whether the ML-based process rates lead to skill-
ful solutions of the ODE system that approximates the original KCEs. Before we do so, we first analyze the
ML models in some more detail in the next section.

6. Interpreting the NNs With Partial Dependence Plots
While we have seen that the ML models can achieve similarly good predictions of the conversion rates as
SB2001, they do not directly reveal how they do so. However, there are ways to peek inside the “black box”
that allow to gain some insight from the trained models (McGovern et al., 2019). In particular, we use a
method called partial dependence plots (PDP) (Friedman, 2001). To create a PDP, one predictor is set to a
fixed value for all samples in the test set, which is then passed to the trained model to create a prediction.
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Partial dependency analysis for all 4 process rates
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Figure 6. Partial dependence plots for the neural networks as described and selected in section 5. Autoconversion is ML Model 4 of Table 2. Red dashed lines
denote predictions for SB2001. For AC, we used their Equation 21, for AU Equation 16, for SCc Equation 14, and for SCr Equation 19. For the variables that
were not varied, the mean over the test set was used to create the SB2001 predictions.

that the ML approach finds dependencies on Lc, x̄c, ", and # that are very similar to SB2001. The dependency
on # is somewhat, the one x̄c only marginally, weaker than the analytic relations of SB2001. The latter orig-
inate directly from the Long (1974) kernel, but the Long-kernel itself is only an approximation, and, hence,
it is not obvious that it provides the correct functional relationships. ML Model 4 predicts an increase of AU
with " that is qualitatively similar to Φau(") of SB2001. Note that the " dependency that results from the PDP
analysis corresponds to

AU ∼
[

1 +
Φau(")
(1 − ")2

]
(22)

rather than just Φau(") itself. This explains why AU of SB2001 levels off at small " in Figure 6. For small "
the ML model shows smaller AU than SB2001.

Also, for the two self-collection rates the agreement between ML Model 4 and SB2001 is surprisingly good,
although we have to emphasize that Figure 6 is plotted in log scales. For a small cloud liquid water content
Lc < 10−4 the ML model predicts a lower self-collection rate (SCc resp.) than SB2001. The same is observed
for rain with Lr < 10−5 leading to a lower self-collection rate SCr compared to SB2001.

The dependency of cloud droplet self-collection on # shows a good agreement, whereas the additional depen-
dency on x̄c is weak. Cloud droplet self-collection shows an increase for large ", which should be interpreted
with caution due to the fact that this is only a box model without sedimentation or other effects. Note that
the SB2001 cloud droplet self-collection rate as shown here includes the loss due to autoconversion.

Thus, the PDP technique confirms that the ML algorithm is able to extract physically reasonable nonlinear
relationships for the warm-rain processes from the training data. The main dependencies are consistent
with the well-established warm-rain parameterization of SB2001. The additional sensitivities are physically
reasonable and promise to provide an improvement over SB2001. Whether they actually hold that promise
will be to focus of the next section.
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! Hence, ML can indeed recover the dependencies of the SB2001 scheme. 
! ML is not necessarily a black box, we can check what the scheme is doing.



The warm-rain parameterization needs to solve the ODE

! Will the ML models perform as well as SB2001 for the ODE solutions?
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with a constant c and therefore similarity solutions of the form "̃ (x, t) = c" (x, ct) exist for each
solution f (x, t).

Atmospheric models do not necessarily predict f (x, t); instead, only partial moments of this distribution in
two size ranges are used, which are defined as

M(k)
c = ∫

x∗

0
xk" (x)dx, (4)

M(k)
r = ∫

∞

x∗
xk" (x)dx, (5)

and drops smaller than the mass x∗ = 2.6 × 10−10 kg are cloud droplets, and larger drops are raindrops.
M(0)

i = Ni is the number density, and M(1)
i = Li the mass density or cloud resp. rain water content. Depend-

ing on the number of moments that are used for each particle category, parameterizations are classified as
single-, double-, or triple-moment schemes. In the following, we focus on double-moment schemes with
the variables Nc, Lc, Nr , and Lr . It is straightforward to prove that the liquid water content L = Lc + Lr
is conserved by Equation 1 and the scaling constant c of similarity solutions can be identified as c = L̃∕L
(Drake, 1972).

The time evolution described by Equation 1 establishes a system of ODEs for the partial moments Nc, Lc,
Nr , and Lr given by

dLc
dt = −AU − AC, (6)

dLr
dt = + AU + AC, (7)

dNc
dt = −2AUN − ACN − SCc = − 2

x∗
AU − 1

x̄c
AC − SCc, (8)

dNr
dt = + AUN + ACN − SCr = + 1

x∗
AU − SCr , (9)

with the mean cloud droplet mass x̄c = Lc∕Nc. The autoconversion rate AU, the accretion rate AC, and
the two self-collection rates SCc and SCr are unknown, and to specify these process rates in terms of the
partial moments is known as the warm-rain parameterization problem. Note that we have already made
the approximation to couple the number rates of autoconversion and accretion, AUN and ACN , to the mass
rates (Beheng, 1994, 2010) by the assumption that autoconversion creates droplets of the mass x* and accre-
tion collects on average the cloud droplets with mass x̄c. All moments and the process rates are positive
semidefinite quantities. The time evolution of Lc is monotonically decreasing, because it has only sink terms.
Correspondingly, Lr increases monotonically.

The autoconversion rate AU and the accretion rate AC can be calculated directly from known solutions of
the kinetic equation by

AU = ∫
x∗

x′=0 ∫
x∗

x′′=x∗−x′
" (x′)" (x′′)K(x′, x′′)x′dx′dx′′, (10)

AC = ∫
x∗

x′=0 ∫
∞

x′′=x∗
" (x′)" (x′′)K(x′, x′′)x′dx′dx′′, (11)

and similar integral forms exist for SCc and SCr (Beheng, 2010; Doms & Beheng, 1986).

Having such data reduces the parameterization problem to a regression task and depending on the input
data and regression assumptions different parameterizations have been derived in the last decades (Beheng,
1994; Berry & Reinhardt, 1974; Khairoutdinov & Kogan, 2000). In the following, we will compare with the
double-moment parameterization of Seifert and Beheng (2001; SB2001 hereafter) given by

AUsb =
kc

20x∗
($ + 2)($ + 4)

($ + 1)2 L2
c x̄2

c

[
1 +

Φau(%)
(1 − %)2

]
, (12)
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ODE solutions and super-droplet benchmark:

! The ML-based model does okay, but the dependencies are not quite right. 
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Figure 7. Time series of the rain water content for the solution of the KCE and the ODE solutions using SB2001 and
ML Model 4 with autoconversion predictors Lc, x̄c, ν, and τ. Black and gray colors are the KCE solutions, red to orange
colors for SB2001, and bluish colors the ML model. Shown are four difference initial conditions with (from left to right,
different hue of colors) (1) L0 = 1 g m− 3, r̄0 = 14 μm, " = 0; (2) L0 = 0.7 g m− 3, r̄0 = 14 μm, " = 0; (3) L0 = 0.7 g m− 3,
r̄0 = 11 μm, " = 0; (4) L0 = 0.5 g m− 3, r̄0 = 11 μm, " = 2.

7. Results for the ODE System
In atmospheric models the warm-rain ODE system, Equations 6–9, is part of a much larger PDE system, and
these source and sink terms are usually integrated with a simple Euler forward time stepping. Hence, we do
the same here using a sufficiently small time step of 5 s. In NWP and climate models time steps of 20 s and
up to several minutes are common, but this can deteriorate the solution of the warm-rain ODE system.

Note that we solve here only the ODE system as given by Equations 6–9 and no additional processes like
drop sedimentation, drop breakup, or large-scale dynamics are taken into account. This ODE system should
therefore parameterize the KCE as defined by Equation 1 and be interpreted as a box model or as spatially
homogeneous cloud.

In the following, we focus on comparing the different ML models for autoconversion with benchmark solu-
tions of the KCE and the parameterization of SB2001. In this section, all ML models use the same choices
(and hyperparameters) for accretion and the two self-collection rates by using the ML models that gave the
best results against the testing data.

Figure 7 shows the rainwater content Lr for four solution with different initial conditions with zero initial
rainwater, but with different initial liquid water content L0 = Lc(t = 0), different initial mean volume radius
r̄0 = r̄c(t = 0) and different shape parameter ". The time evolution is typical of all solutions of the KCE
and shows a conversion from the pure cloud water initial condition with no rain to a pure rain water state
where all cloud water has been depleted. Hence, the solutions change primarily in their time evolution,
namely, the onset of the cloud-to-rain conversion, which is dominated by autoconversion, and the speed of
the conversion to rain once a first significant amount of rain has formed. This slope is set by the accretion
rate. Obviously, the amount of rain is limited by the total liquid water in the system L0. Lower L0, smaller r̄0,
and larger " lead to a slower formation of rain and a delay of the transition to a pure rain state. For these four
cases, SB2001 provides almost perfect solutions that are very close to the benchmark solutions of the KCE.
The ML model, here Model 4, shows a delay for the three cases with " = 0 and a too fast formation of rain for
the slowest case with " = 2. Hence, the dependency on " seems to be suboptimal in the ML model. To analyze
those dependencies more systematically, we define a time scale tp as the time when p percent of the cloud
water has been converted to rainwater. The time scale t50 is a good measure for the overall performance of
the ODE systems, whereas t10 focuses on the initial stage where autoconversion tends to dominate.

Figure 8 presents the results for t10 for ML Model 2 with predictors Lc, x̄c, and " and Model 4 that, in addition,
includes #. ML Model 2 has clear deficiencies and fails to represent the timing of the benchmark solutions in
a large part of the parameter space. In contrast, Model 4 shows a reasonable behavior, and also, the depen-
dencies on r̄0 and " are qualitatively correct. But ML Model 4 shows a significant bias with a delay in most
parts of the phase space and a too weak sensitivity to r̄0. The dependency on " is actually captured quite well
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The warm-rain ML-based microphysics
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The ML approach provides a viable warm-rain parameterization, but does not 
perform as good as the Seifert and Beheng (2001) scheme. 

The reasons for the deficiencies of the ML-based warm-rain scheme are 
discussed in the paper: 

Seifert, A., & Rasp, S. (2020). Potential and limitations of machine learning for modeling warm‐
rain cloud microphysical processes. Journal of Advances in Modeling Earth Systems, 12, 
https://doi.org/10.1029/2020MS002301

Python scripts and the training data for the warm-rain scheme are publicly 
available from 

https://gitlab.com/axelseifert/warmrain 

https://doi.org/10.1029/2020MS002301
https://gitlab.com/axelseifert/warmrain


An ML-based P3-like multimodal extension  
of the two-moment bulk scheme in ICON

! ML-based: The new scheme is based on machine learning (ML) using neural 
nets or perceptrons and supervised-learning to approximate microphysical 
processes 

! P3-like: Following the P3 scheme of Morrison and Milbrandt (2015) the 
scheme predicts particle properties like rime mass (or rime fraction) and rime 
density in addition to traditional bulk moments like mass and number density. 

! Multimodal: In contrast to the original P3 scheme the ML-based scheme still 
uses several categories or modes. 

! Extension: The ML-based parameterizations replace only the ice 
microphysical processes in the ICON two-moment scheme. The warm-rain 
parameterizations and other processes like ice nucleation remain unchanged.

!13



ML for ice microphysics

! To generate the training data we use 
the Lagrangian particle model 
McSnow that explicitly resolves ice 
processes (Brdar and Seifert 2018) 

! Each McSnow particle has severals 
variables that describe its current 
microphysical state. 

! Needs at least 1000 particles per grid 
point, better 10000 to reduce Monte-
Carlo noise. 

! These are expensive simulation that 
are even today hardly feasible in 3d.

!14
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ML for ice microphysics

! We try to built an ODE system with 6 particle classes: 
! ice monomers, snow aggregates, rimed ice, rimed snow 

 graupel and rain (and cloud droplets). 
! All classes have mass and number densities, rimed classes (including graupel) 

have in addition rime mass, rime volume and liquid mass. 
! Hence, for rimed particle classes with have rime fraction, rime density and 

melted fraction as bulk properties (P3-like scheme). 
! This makes a total of 23 variables and more than 100 process rates. 
! Can we „learn“ all those process rates from McSnow output and come up with 

an ODE system that works reasonably well?
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Training data for bulk ice microphysics:
! We use an idealized box model falling through a prescribed atmosphere. 
! The idealized box model allows many simulations. This is preferred here 

over a few 3d simulations. 
! Training data is generated by Latin hypercube sampling of initial condition 

and atmospheric profile resulting more than 10.000 simulation.   
! This can cover a large range of parameters. 
! It proved to be necessary to include updraft parcels in the training data to 

better represent processes within the convective core. 
! Maybe another advantage of the idealized box model approach is that it 

does not contain an imprint of the current climate, in contrast to more 
realistic simulations.

!16



Parcel falling through an atmospheric profile

! height = f(time),   i.e. parcel falling through a prescribed atmosphere. 
! Mass and number densities for McSnow (solid), diagnosed ODE (dotted) and 

the ML-based ODE (dashed)
!17



Some more details on ML approach
! Here we have used Tensorflow/Keras to train rather simple fully connected 

neural nets (perceptron). 
! Features (input variables) and labels (output variables, process rates) are log-

transformed, when appropriate, and standardized, i.e., normalized by mean 
and standard deviation. 

! One small neural net with 16 nodes and 2 hidden layers for the regression 
model for each microphysical process rate. 

! ReLU activation is used and different optimizers (SGD, Adam) are applied to 
find the best network parameters. 

! For some processes a classifier network is used to decide whether the process 
is non-zero, before the regression neural net is applied (Gettelmann et al. 
2020, JAMES).  

! Parameters of neural nets are stored in NetCDF files.
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Implementation in the ICON model
! Read neural network parameters from NetCDF and broadcast to all processors 

(only once during model initialization). 
! Use a Fortran implementation of the evaluation (inference) of the neural net 

(based on Fornado of Leonhard Scheck and Fabian Jakub, LMU) 
 
        https://gitlab.com/LeonhardScheck/fornado 

! Vectorized on NEC Aurora using index lists. 
! About 50 % of the time spent on the microphysics scheme is then the 

evaluation of the neural nets.  
! Remaining time includes the preparation of the index lists, but also 

sedimentation, ice nucleation, warm-rain processes etc. 
! The ML-based scheme with 23 variables is about twice as expensive as the 

standard two-moment scheme with 13 variables.
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https://gitlab.com/LeonhardScheck/fornado


Simulation of an idealized squall line with ICON
! Vertical cross section of hydrometeors: ML-based vs classic two-moment  
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Simulation of an idealized squall line with ICON
! Radar reflectivity (Rayleigh approximation)

!21
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Simulation of an idealized squall line with ICON
! Total rime fraction and rime fraction of „rimed snow“
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Simulation of an idealized squall line with ICON
! liquid fraction of graupel 

!23

The scheme includes prognostic 
melting, but the wet growth regime is 
not yet well represented (too low liquid 
fraction in updraft). 
This is probably a deficiency of the 
training data.



Lessons learned
! Machine learning provides an easy-to-use workflow to built regression models 

from training data. This can be used to develop bulk microphysical schemes. 
! In my opinion, this is interesting also for „physics people“, because 

1. The most important step is to develop the benchmark model that is used 
to create the training data. 

2. The choice of the variables for the bulk model will determine it’s 
behavior. 

3. The setup of the simulations with the benchmark model is a crucial step 
and requires a good understanding of the relevant physics. 

4. Afterwards we should take the time and investigate what the ML model 
is doing, e.g., does it have the correct asymptotic behavior? How can we 
guarantee that? 

! Overall, ML methods provide an alternative approach to develop physical 
parameterization with the promise to speed-up the development process.
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Conclusions and Outlook

! Machine learning can indeed be used to built regression models of 
microphysical processes based on benchmark particle simulations, e.g., 
using super-droplets or the Lagrangian particle model McSnow. 

! For warm-rain autoconversion a straightforward ML-based scheme is inferior 
to established parameterizations like Seifert and Beheng (2001), see Seifert 
and Rasp (2020) for details. 

! The extension of the ICON two-moment microphysics scheme with a ML-
based P3-like ice microphysics works well and produces a more pronounced 
stratiform region for the idealized squall line.  

! Hence, the straightforward approach to train process rates with standard ML 
methods works reasonably well, but more advanced approaches should be 
explored in the future.
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