
christoph.schraff@dwd.deUpdate on KENDA and a Particle Filter
EWGLAM / SRNWP Meeting, Brussels, 26 – 29 Sept. 2022 1

• Update on KENDA  (short selection)

• Localized Mixture Coefficients Particle Filter
(Nora Schenk, Anne Walter, Roland Potthast, DWD)

Update on KENDA (Kilometer-scale Ensemble-Based Data Assimilation System)
and a Particle Filter

Christoph Schraff
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Update on KENDA
(short selection)  

• SEVIRI VIS:  technically ready for operations   (Lilo Bach a.o.)

 positive impacts, except precip due to model biases
(too much cloud + humidity, too little convective precip)

 adjusting model parameters  (model – DA interaction)

 this winter: in ICON-D2 parallel routine
in ICON-RUC 24/7 test system

mid-level cloud cover

low cloud cover

global radiation at surface

2-m temperature• SEVIRI WV all-sky:  clear positive impact, 
(Annika Schomburg a.o.) into parallel routines in 2023

• radar volume data  (Thomas Gastaldo; Klaus Stephan, Uli Blahak a.o.)

 radial winds (Italian stations) operational at ARPAE

 EMVORADO can process radar Z + Vr
from all neighbouring countries of DE

• 3 wind lidars  +  1 MW radiometer (BT)  operational at MeteoSwiss (Claire Merker, Daniel Regenass
Daniel Leuenberger a.o.)

• latent heat nudging:  major revision, only humidity updated now (Klaus Stephan)

Synop verif.  June 2021
06, 12, 18-UTC runs

change [%] of std. dev
due to SEVIRI VIS
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• pdf’s assumed Gaussian
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Intro to the Particle Filter:
Ensemble DA – analysis step

background pdf 
(prior)
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 Kalman Filter 
for linear system
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Bayes theorem

 analysis pdf 
(posterior)

graphs:  scalar case
(1 model variable x,
1 observation  y)
value x

probability
density



observation pdf 
(likelihood) 
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Intro to the Particle Filter:
Ensemble DA – analysis step

• (high-dimensional) non-linear system (NWP) :   pdf’s approximated by ensembles  

ଵ

ିଵ
  ்

-th column of  
 
 

in the (K-1) -dimensional (!) sub-space S spanned by background ensemble perturbations :

set up cost function  in ensemble space,  
explicit solution  

 for minimisation (Hunt et al., 2007)

 LETKF (EnKF)

:  ‘ensemble perturbations’
or ‘ensemble deviations

 ()
()   

 ()
()
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Intro to the Particle Filter:
Ensemble DA – analysis step

• example:  background ensemble indicates 
pdf is non-Gaussian (slightly bi-modal)

 Gaussian assumption by LETKF (EnKF) 
not fulfilled

• Particle Filter:  no assumption on pdf;   sequential importance resampling (SIR) 
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Bayes

 
  

 ,     = 1     

 if Gaussian obs errors 

 resampling (particle drawn from analysis pdf
by sampling with replacement;   particles can be chosen multiple times)

 for high-dim systems, many obs:  only very few particle chosen, filter collapse
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Localized Mixture Coefficients Particle Filter
LMCPF  (Nora Schenk, Anne Walter, Roland Potthast)

1 Background 1

2

3

Shift of Particles

Resampling

Gaussian Rejuvenation

assumptions on background pdf:

1. Gaussian mixture
(sum of Gaussians, i.e. non-Gaussian)




𝒌
2. covariance 

 of each particle :

 ି   𝐱,𝐲 
ି   ೖ

್  𝐱 
ି   ೖ

ೌ  𝐱

 DA cycle, aim: describe  by
equally weighted members
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Localized Mixture Coefficients Particle Filter
LMCPF

1 1

2

3

Shift of Particles

Resampling

Gaussian Rejuvenation

Background

assumptions on background pdf:

1. Gaussian mixture
(sum of Gaussians, i.e. non-Gaussian)




𝒌
  ா்ி  ଵ
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2. covariance 
 of each particle 

 pdf / cost function in ensemble space

 ()
()   

 ()
()

as in LETKF,  but   ()
, ெி

 ()
, ா்ி
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LMCPF:
Resampling

1 Resampling
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• compute relative weights of particles (members) 
acc. to their analysis pdf

• sampling with replacement,  based on weights  (scaled:      
 )

example:   ଵ


 ଶ


 ଷ


ens. members

3

2

1
accumulated

weights0.6                  2.6 3.0

 accumulated weights :    


  ିଵ
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಼షభ

𝐑షభ෫
షభ
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weights in ensemble space: 

  𝐑ିଵ෪ ≔ 𝐘்
𝐑ିଵ𝐘

𝐂 ≔ 𝐑ିଵ෪ ିଵ
𝐘்

𝐑ିଵ 𝐲 − 𝐲ത

inverse 𝐑-matrix  (in ens. space)

ens. mean innovation projected on ensemble space

 𝐗 𝐞 =  𝐱 
 −  𝐱ത 𝑒:  𝑘-th ensemble member  ( “ )

𝐘 = 𝐇𝐗 ens. pert. in observation space

 select member with    ିଵ


   


 draw random numbers   , e.g.

set  ୨

𝑅 = 0.8  1.2            2.7
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1 Resampling

  ( -funct.: SIRF) 

 large (O(1)) 

LMCPF:
Resampling
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 with increasing  , resampling is less selective, 
i.e. more members are kept
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1 Resampling

LMCPF:
Resampling
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𝐲ିு(𝐱)  𝐑 ା ȉ 𝐇𝐁𝒑
ಽಶ಼ಷ𝐇 షభ

 𝐲ିு(𝐱)

 


 


 


 with increasing  , resampling is less selective, 
i.e. more members are kept

 (particles = -funct.: SIRF)  .5 
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2 Shift of Particles

LMCPF:
Shift of Gaussian particles
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analysis for each of the Gaussian particles: 

in ensemble space,   
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௦௧ ×

  𝐑ିଵ෪ ≔ 𝐘்
𝐑ିଵ𝐘

𝐂 ≔ 𝐑ିଵ෪ ିଵ
𝐘்

𝐑ିଵ 𝐲 − 𝐲ത

inverse 𝐑-matrix  (in ens. space)

ens. mean innovation projected on ensemble space

 𝐗 𝐞 =  𝐱 
 −  𝐱ത 𝑒:  𝑘-th ensemble member  ( “ )

𝐘 = 𝐇𝐗 ens. pert. in observation space
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LMCPF:
Gaussian rejuvenation

1) random matrix × with standard-normal distributed entries

2) spread control factor ;  

(multiplicative covariance inflation factor of LETKF, if FG ensemble underdispersive)

3) analysis covariance matrix for (each) Gaussian particle in ensemble space 

3 Gaussian Rejuvenation

new particles are drawn from a Gaussian distribution
around each selected and shifted particle, based on: 

ି
்
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ா்ி ்
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𝒌


𝒌


𝒌


in ensemble space   

duplication and perturbation of selected particles:
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LMCPF:
analysis ensemble

resampling Gaussian rejuvenationshift of particles

– explicit localization in observation space:
compute   

ெி separately at every point of coarse analysis grid
after scaling  ି𝟏 by Gaspari-Cohn (selects obs only in vicinity),

interpolate   
ெி to model grid and apply to   



– computationally efficient,
but also restricts analysis correction to
local subspace spanned by the ensemble

forecast
members

– analysis ensemble members 
are locally linear combinations
of first guess ensemble members

do analysis in the space of the ensemble deviations  (as in LETKF)

 
   

 
ெி

 
ெி -th column of transform matrix ெி 
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LMCPF:
Application to ICON-D2

 ICON-D2 with IAU:   imbalances only moderately increased in LMCPF vs. LETKF

domain-averaged absolute surface pressure tendency

localisation    strong spatial variations of transform matrix    strong imbalances ?

IAU

+1h–5 min +2h

DA cycle: 
LMCPF
LETKF

free forecast: 
LMCPF
LETKF
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LMCPF
Application to ICON-global

RMSE
temperature

spread
temperature

RMSE
geopotential

height

RMSE
wind speed

verification

ensemble
mean

against
radiosondes

Jan. 2022
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LMCPF
Summary

• LMCPF able to show better results than LETKF for Lorenz 1996 model

• LMCPF runs stably for ICON-D2 (8 days),  but FG rmse ~ 5 % larger than LETKF

• LMCPF runs stably for ICON-global (months), skill as good as LETKF (troposphere) 

• LMCPF ensemble spread smaller than with LETKF

Outlook:

• automatic adjustment of particle uncertainty parameter 

• limited HR !     (LMCPF yet to be considered experimental system for research)
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