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The BRIDGE project     (Basic Research for ICON with DG Extension) 

BRIDGE is an informal project at DWD.

currently:  F. Prill, M. Baldauf 
joining later:  D. Reinert, U. Schättler, S. Borchert, …

Goals: 

• develop a prototype for a Discontinuous Galerkin (DG) implementation 
of the 3D Euler equations (‚DG-HEVI on the sphere‘)

• together with a minimal set of physical parameterizations 

• using ICON infrastructure (parallelisation, I/O, ...) 

• more object-orientation and use of standard software (e.g. YAC coupler, ...)

→ BRIDGE is an intermediate step to a full–fledged ICON implementation.
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2D toy model (C++ code) ~2014 – 2020
- How to bring DG on the sphere/ellipsoid (Baldauf (2020) JCP)
- HEVI scheme with DG (Baldauf (2021) JCP)

BRIDGE                                   2020 - ~2023
(Basic Research for ICON with DG Extension)        
- Shallow water on the sphere/ellipsoid (explicit)
- 3D Euler equations (HEVI) + parametr.

ICON-DG                           ~ 2024 (?) - ~ 2028 (?)   

DG development at DWD

COSMO-DG                              ~2009-2014
- 3D Euler eqns, explicit time integr., structured grid                       



Discontinuous Galerkin (DG) methods in a nutshell (I)

From Nair et al. (2011) in 
‚Numerical techniques for global atm.
models'

1.) weak formulation

2.) Finite-element ingredient
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e.g.
Cockburn, Shu (1989) Math. Comput.
Cockburn et al. (1989) JCP
Hesthaven, Warburton (2008)

Galerkin-idea: identify v  pl

Modal base: orthogonal functions e.g. Legendre-Polynomials
Nodal base: interpolation (Lagrange) polynomials





Discontinuous Galerkin (DG) methods in a nutshell (II)

3.) Finite-volume ingredient:
Replace physical flux by a numerical flux in the surface integral  
 couple two neighbouring cells

 ODE-system for q(k)
jl(t)

Often used: simple Lax-Friedrichs flux
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4.) Gaussian quadrature for the volume and surface integrals

Weak formulation

5.) Use a time-integration scheme (Runge-Kutta, …)
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Sequence of coordinates and their transformations in BRIDGE

1. Geographical coordinate
for external data and general I/O purposes

2. Local (gnomonial) coordinate 
maps a spherical or ellipsoidal (or just flat) triangle 
to a unit triangle. 
Use covariant form of eqns. (Ricci tensor calculus)
 avoids any singularity both in coordinates and in base vectors! 
~ concept of a differentiable manifold (Baldauf (2020) JCP)

3. Unit coordinate
affine trafo., compatible to standard FE codes

4. Terrain-following coordinate
treat orography, use strong conservation form (Baldauf (2021) JCP)

5. Submapping coordinate
affine trafo., reduce number of flux transf. at edges

affine 
trafo.
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Extension to the 3D Euler equations on the sphere together with
terrain-following coordinates

Additional metric terms of terrain-following coordinates can destroy 
numerical local conservation  use strong conservation form of the equations,
i.e. use both base vectors for a smooth (e.g. spherical) coordinate system K‘
and for the terrain-following system K (Wedi, Smolarkiewicz (2003), Baldauf (2021) )

example: strong cons. form of the momentum equation:

now: additional metric terms only from the smooth system K‘

for diffusion (Dik = deformation tensor), addmomentum flux for Euler eqns.

Additionally: Continuity eq. (for ) and energy equation (for )
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A general remark about this talk:

at the last SRNWP/EWGLAM-meeting 2021, almost all results shown 
still have been generated by the toy model (C++ code, only 2D, …)

Now, all results are generated by the BRIDGE code …



3D Euler equations:
quasi-linear expansion of gravity and sound waves in a spherical shell

Baldauf, Reinert, Zängl (2014) QJRMS derive a linearized analytic solution for
• test scenario (A):   f = 0
• test scenario (B):   f = 10 * fgeo(45°)   f / N ~ 0.05

DG 4th order scheme with explicit time integration (4th order Runge-Kutta)

S                              E                             N
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‚small planet‘:
R = Rearth / 50
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A very first (!), almost (!) fair comparison  between ICON and BRIDGE

• test case Baldauf, Reinert, Zängl (2014) QJRMS: expansion of sound- and 
gravity waves in a spherical shell (uses shallow atmosph. approx., U0=0, f=0).

• R= rearth / 100   almost isotropic grid cells 
 HEVI- (ICON) and purely explicit time integration (BRIDGE) are comparable!

• all simul. on our RCL (ICON: 32, 64, 384 proc. (thanks to D. Reinert!), BRIDGE: 16 proc.)

R2B5L12

R2B6L24
R2B7L48

R2B3L3

R2B4L6

BRIDGEICON

R2B5L12

R2B7L48

R2B3L3

R2B4L6

M. Baldauf (DWD)
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Parallelization in BRIDGE

Goals:
• Minimum number of MPI 

synchronizations 
• Do as much as possible 

calculations between 
a send and a receive 

DG allows to achieve these 
goals!
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Physical diffusion in a DG scheme

It is a basic result of FE schemes that the 2nd order diffusion operator
requires continuous base functions (through the whole domain!).
This seems to be in contradiction to the DG method… 
 several approaches exist in the literature

Bassi, Rebay (1997) [BR1]:
determine (spatial) derivative variables q,i = ei  grad q = div (ei q)
of the prognostic variables q and treat them by the ‚DG procedure‘;
now numerical fluxes don‘t need numerical diffusion
(for inclusion of metric properties see Baldauf (2021) JCP).

This needs:
• implementation of surface- and volume integrals of the above mentioned ‚pseudo-fluxes‘ 
• additional source term integrals, 
• an externsion of the FE-data structures.
• Implementation of test cases described in Baldauf, Brdar (2016) QJRMS



Falling cold bubble in a viscous medium 
test setup: Straka et al. (1993)

Reference solution 
for  from 
Straka et al. (1993)
(x=z=25m)

BRIDGE, 4th order, RK4, x=z=400m
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Horizontally explicit - vertically implicit (HEVI)-scheme with DG

explicit implicit explicit implicit

Motivation: get rid of the strong time step restriction by vertical sound wave
expansion in flat grid cells  (in particular near the ground)

Baldauf, M. (2021): A horizontally explicit, vertically implicit (HEVI) discontinuous
Galerkin scheme for the 2-dim. Euler and Navier-Stokes equations using 
terrain-following coordinates, J. Comp. Phys. 446

• The implicit part leads to several block-tridiagonal matrices 
 here a direct solver is used (expensive!)

• Use of IMEX-Runge-Kutta (SDIRK) schemes: SSP3(3,3,2), SSP3(4,3,3)
(Pareschi, Russo (2005) JSC)
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Flow over mountains
setup from Schär et al. (2002), N=0.01 1/s, …, with vertical grid stretching
HEVI-solver, 4th order, SSP3-4-3-3 RK scheme, dx=1km, dt=0.2s

Colors: BRIDGE   (1 proc. on rcl, t_wall=21.5h)
Contours: analytic solution (Baldauf (2008) COSMO-NL)
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Current state of the efficiency of the HEVI solver

In a full 3D simulation with DG 4th order, currently 95% of computation time
is spent in the HEVI solver!

- Generation of coefficient matrix elements (26%)
- LU decomposition (22%)
- Solve LSE (23%)
- Calculate implicit tendency (24%)

Of course, these numbers must be heavily reduced!

There exist ideas in the literature using the so called ‚Schur complement‘
or ‚static condensation‘, which must be tested…
We currently are in contact with the University of Cologne,
who have experience with such methods.

The block-tridiagonal coefficient matrices contain ~25% non-zeros (non-collocated)
or ~6 % (collocated)  i.e. they are not (very) sparsely occupied

called every 50 time steps

called every RK substep
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0. first version of a FE/DG framework available, MPI parallelized                Q2/2021 
1. shallow water equations on the sphere, explicit time integration (RK)  Q3/2021 
2. 3D Euler equations on the sphere, explicit time integration (RK)   Q1/2022  
2.b with 3D diffusion (+ a simple turbulence scheme)               Q2/2022 /
2.c grid refinement works                                                                  Q2/2022  
3. Euler equations, HEVI time integration (IMEX-RK)                                    Q3/2022  ()
3.b optimization of the vertically implicit solver (Schur compl.,...) Q4/2022
3.c with 3D diffusion (+ a simple turbulence scheme), HEVI           Q1/2023
4. cloud microphysics (Kessler) + tracer advection (positive definit)  

+ explicit sedimentation scheme                                                   Q4/2022
4.b cloud microphysics (cloud ice, Graupel) 

+ vertically implicit sedimentation scheme                                 Q1/2023
5. limited area version available                                                                       Q1/2023
5.b vectorized version available                                                        Q2/2023
6. coupling of a full fledged turbulence + BL scheme                                  Q2/2023

Milestones of the BRIDGE-project  (status Sept. 2022)

During all these stages, additional optimization will take place …
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Outlook: building blocks for turbulence parameterizations (I)

Keep in mind: we want to conserve prognostic variables, 
therefore, the turbulence parameterization shouldn‘t deliver tendencies, but:

• fluxes f (s) (for explicit time integration) 

• or a coefficient matrix of the form Hss‘  f (s) /q(s‘) (for implicit time integration)

• or a combination of both 

note: don‘t bother with the time-integration itself; this takes place in a (hopefully)
stable IMEX-RK scheme.

To calculate these fluxes at a certain (quadrature) point r, 
the turbulence model gets derivative variables at r from the dyn. core
(‚x-, y-, z-‘-derivatives of the prognostic variables , M, =, q(s)). 
Use the chain rule of differentiation to derive arbitrary other spatial derivatives
of a variable  = f(, M, , q(s)).
In this ideal world, a turbulence modeler wouldn‘t need any grid information!
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Outlook: building blocks for turbulence parameterizations (II)

Problems to solve:

• In  = f(, M, , q(s)), the function f may contain 
non-differentiable Heaviside-functions (i.e. ‚if-conditions‘)   (?).
Replace these by ‚relaxation expressions‘?

• How to treat non-local closures? 
(length scales, smoothing operations, spatial integrations, …)

Planned steps from the ‚DG developers‘ side for the turbulence modelers:

• Deliver a Smagorinsky model

• Implement a prognostic TKE equation as an example

• Deliver diffusion coefficients from this TKE
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(Folien von ICCARUS 2022 WG2 meeting)
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DG – Pros …

• local conservation of every prognostic variable           ‚FV heritage‘

• any order of approximation (convergence) possible        ‚FE heritage‘

• flexible application on unstructured grids (also dynamic adaptation is 
possible, h-/p-adaptivity)

• very good scalability on massively-parallel computers (compact data transfer 
and no extensive halos)

• separation between (analytical) equations and numerical implementation

• boundary conditions are easily prescribed (fluxes or values in weak form)
 coupling with other subcomponents (ocean model, …) should be easy

• higher accuracy helps to avoid several awkward approaches of standard 
2nd order schemes: staggered grids (on triangles/hexagons, vertically heavily 
stretched), numerical hydrostatic balancing, grid imprints by pentagon points 
or along cubed sphere lines, …

• unified numerical treatment of all flux terms and source terms

• explicit schemes are relatively easy to build and are quite well understood
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DG – … and Cons

• high computational costs due to 

• (apparently) small Courant numbers small time steps

• higher number of degrees of freedom 
• variables ‚live‘ both on interior and on edge quadrature points

• this holds additionally for parabolic problems (diffusion)

• HEVI approach leads to block tridiagonal matrices with larger blocks

• well-balancing (hydrostatic, perhaps also geostrophic?) in Euler equations 
is an issue  can be solved!

• basically ‚only‘ an A-grid-method however, the ‚spurious pressure mode‘ 
is very selectively damped!

 All these expenses must be outperformed by:
higher convergence order, better computational intensity, and better parallelization!



Dispersionrelation der 
1D-Advektionsgleichung 
mit DG n-ter Ordnung (n=1..5)

Beitrag von Michael B.
12.11.2021

k x

Re 

Im 
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Shallow-water equations in covariant form, i.e. only tensors occur
 equations are valid on any 2D manifold (at least from a mathematical viewpoint)

express covariant derviative j 

by partial derivative and Christoffel symbols
 accessible to a numerical implementation: 

Ejl : 2nd rank Levi-Civita pseudo tensor, 
fc : Coriolis parameter (a pseudo scalar field)

momentum flux tensor:

source vector of momentum: 

Some basics on manifolds

Baldauf, M. (2020): Discontinuous Galerkin solver for the shallow-water equations in covariant form on 
the sphere and the ellipsoid, J. Comp. Phys. 410
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(A):
f=0

(B):
f=10*f(45°)

f / N ~ 0.05

BRIDGE, 4th order, R2B2 L5 ICON  R2B6 L40

3D Euler equations:
quasi-linear expansion of gravity and sound waves in a spherical shell

Black lines : analytic solution (BRZ2014)
Color shading: BRIDGE  / grey shading: ICON

(from Baldauf et al. (2014) QJRMS)
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Step 2: 

extension for the Euler equations in terrain-following coordinates
and a HEVI time integration

Dry Euler equations:
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Properties of the dynamical core of ICON

 uses non-hydrostatic, compressible Euler eqns.
 exactly mass- and tracer mass-conserving.
 It is a true 2nd order scheme (as long as  

parameterizations are switched off).
 stable in very steep mountainous regions.
 useable both for global and regional applications.
 computationally very efficient and scales well on current parallel comp.
(Zängl et al. (2015) QJRMS, Zängl (2012) MWR)

Some numerical details:

• staggering:   horizontally: triangle C-grid,   vertically: Lorenz-grid
• mixed finite-volume / finite-difference
• predictor-corrector time-integration
• several damping mechanisms are used (divergence damping (2D and quasi-3D), off-

centering in the vertically implicit solver, artificial horizontal diffusion…)

ICON (ICOsahedral Nonhydrostatic)
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IMEX-Runge-Kutta

• general stability function for the Dahlquist problem is known
• general order conditions are known
• described by double Butcher tableaus

e.g. SSP3(3,3,2) by Pareschi, Russo (2005) JSC:

• practically SDIRK schemes are preferred

Lock, Wood, Weller (2014) QJRMS
Pareschi, Russo (2005) JSC:  SSP3(3,3,2), SSP3(4,3,3)
Giraldo et al. (2012) Siam JSC: ARK2(2,3,2)
Kang, Giraldo, Bui-Thanh (2020) JCP: IMEX-RK in hybridiz. DG
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+ a final step that combines all tendencies S(j) and F(j)  qn+1

• coefficients  are described by double Butcher tableaus
e.g. SSP3(3,3,2) by Pareschi, Russo (2005) JSC:

• general stability function for the Dahlquist problem is known
• general order conditions are known
• practically SDIRK schemes are preferred

Lock, Wood, Weller (2014) QJRMS
Pareschi, Russo (2005) JSC:  SSP3(3,3,2), SSP3(4,3,3)
Giraldo et al. (2012) Siam JSC: ARK2(2,3,2)
Kang, Giraldo, Bui-Thanh (2020) JCP: IMEX-RK in hybridiz. DG

IMEX-Runge-Kutta

RK stages:
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Flow over mountain with the HEVI-solver

h0=10m,  b=5km,  =4km  Frh =100, Fra =0.1 … 0.5
u0=10m/s,  N=0.01 1/s,  T(z=0)=288K

compare with analytic linear solution: Baldauf, 2008, COSMO-NL
(uses only a few further approximations, e.g. it is a fully compressible solution)

Orography:

Setup : Schär et al. (2002)
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Scalar diffusion over flat plane, with orography (analyt.sol.: black contours):

Vectorial diffusion over flat plane, with orography
correct convergence behaviour 

20.05.2022

correct convergence behaviour 
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Flow over mountains with steep slopes and vertical grid stretching

Schaer et al. (2002) MWR, test case 5b: U0=10m/s, N=0.01 1/s, but a=10km

HEVI-DG simulation (4th order) remains stable even for steeper slopes!
to avoid instability by strong gravity wave breaking, vertically implicit ‚3D‘ Smagorinsky diffusion was used

Horo= 4000m, 
max = 58°

Horo= 8000m, 
max = 72°

Horo= 6000m, 
max = 67°

x=4 km;   vertical grid stretching: zmin~46m, zmax~736m, zlowest QP~10.3m

Results from 2D toy model
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Additionally done 

• Method for a consistent use of real orography data       ( EXTPAR)

• Treatment of diffusion in a HEVI-DG scheme with terrain-following 
coordinates (local DG by the Bassi, Rebay (1997) JCP approach)

• Efficiency improvement of the implicit solver
(perform expensive LU-decomposition only after several dozen time steps)

• Formulation of boundary conditions for higher order schemes

Baldauf, M. (2021): A horizontally explicit, vertically implicit (HEVI) discontinuous
Galerkin scheme for the 2-dim. Euler and Navier-Stokes equations using 
terrain-following coordinates, J. Comp. Phys. 446
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What makes DG methods expensive (summary)

• Higher number of degrees of freedom (DOF):

• quadrature points inside the cell and additionally on the edges
(some nodal DG methods avoid additional edge points for the price of accuracy)

• Diffusion (or generally higher order derivatives) by Bassi, Rebay- or 
local DG-procedure needs treatment of derivative variables analogous 
to prognostic variables  again increases number of DOFs.

• HEVI scheme needs solution of band diagonal matrices with relatively
many off-diagonal bands: currently takes about 60% of the whole calculation

• Small t

• CFL numbers are smaller than one would expect; in particular for IMEX-RK
ICON has CFL=0.6; for 4th order DG one would expect CFL~0.15, but SSP3(4,3,3)  0.079

• t is not only determined by csnd but by csnd + |vmax|

 All these expenses must be outperformed by:
higher convergence order, better computational intensity, and better parallelization!
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DG and Parameterisations

General principle: spatial transport (advection, sedimentation, diffusion, …) 
must be treated in the DG-scheme!
Otherwise we loose local conservation.

Box-models (e.g. cloud physics, chemistry/aerosol-packages):
are evaluated  and deliver tendencies in every quadrature point
 at the first place no adaptations necessary!
Nevertheless, the ‚classical‘ physics/dynamics-coupling questions remain: 
overall time integration scheme? how to achieve positive definiteness?

Turbulence: 
Remark: diffusion needs special treatment in DG (local DG, compact DG, …)
Advantage of local DG: derivatives of fields are directly available for 
turbulence modeling!

Analogous: convection param., gravity wave param., …
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DG and physics perturbations in ensembles

Some recommendations …
… to keep conservation properties of the DG scheme:
• in the transport terms, only (physical) fluxes should be perturbed.
• in the source terms: e.g. moisture var., perturb in a way that  

dry + v + r + ... + g is unchanged (while keeping positive def.)

DG and data assimilation

At least adaptations in the forward operators necessary: 
• by the modified output grid; better say: to the position of the I/O-grid points 

(these are probably the quadrature points in the triangle grid)
• different prognostic variables (conserved var.)


