

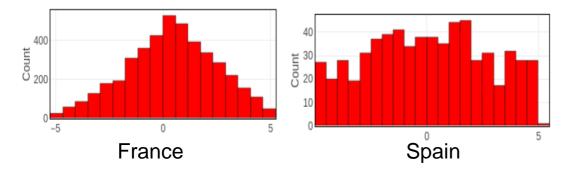
A Consortium for COnvection-scale modelling Research and Development

Use of new observations in ACCORD

Benedikt Strajnar, Philippe Chambon, Magnus Lindskog ACCORD DA teams

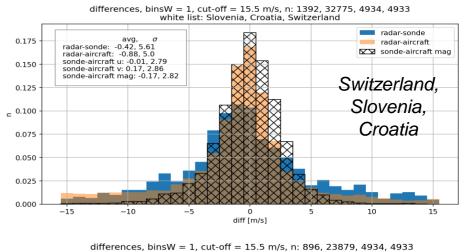
Contents

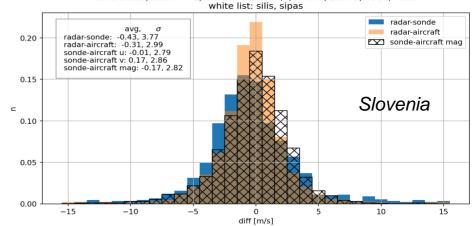
Advances in (operational) use of observations in ACCORD


- Radar products (reflectivity and winds from OPERA)
- Mode-S observations
- Clear and all-sky radiances
- Scatterometers
- GNSS-based observations (radio occultation and new methods)
- Rain attenuation in microlinks
- Conclusions

Doppler wind assimilation

Towards enhanced use of OPERA Doppler winds


- "Radar revolution" in MEPS of MetCoOp: increased density of winds, smaller obs. errors, less thinning
- OPERA OIFS vs. ODE studies
- Wind assimilation studies over Spanish domains
- Validation of dealiased Doppler winds

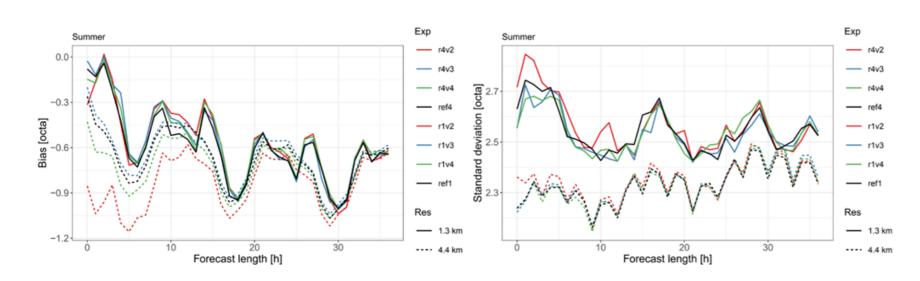


=> Higher-quality provision expected over Spain, reflectivityoptimized wind scans potentially useful.

Work of J. Sanchez, M. Ridal, M.Dahlbom

Differences between dealiased radar, radiosonde and aircraft winds scans with low NI in 2021

Work of V. Švagelj, B. Strajnar, P Smerkol

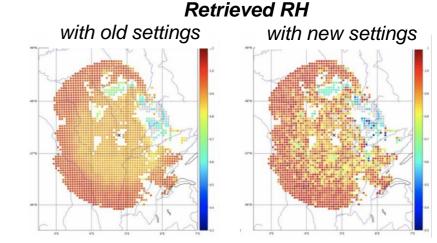

A Consortium for COnvection-scale modelling Research and Development

44th EWGLAM - 29th SRNWP meeting, Brussels, 26-29 September 2022

Radial winds FG departures

Improvements of the 1D-Bayesian scheme for radar reflectivity

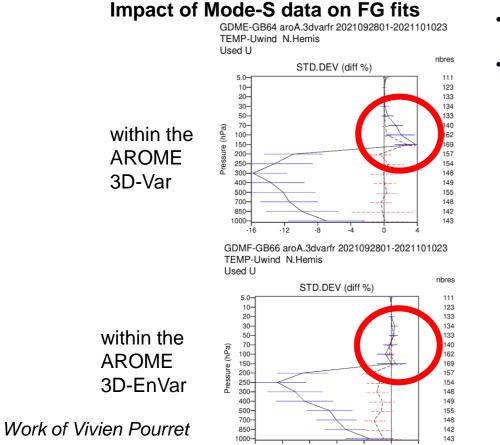
Within the **ALARO-CSC**



- Reflectivity DA decreases with cloudiness (dry observations)
- Universal approach for OPERA modified for use of less observations, redefined sensitivity thresholds
- Radar DA operational in 1.3 km ALARO-RUC (Slovenia)
- AROME-FR: New settings allow more realistic retrievals with a better variability more consistent with observations

Work of A. Bučanek, B. Strajnar, S. Panežić

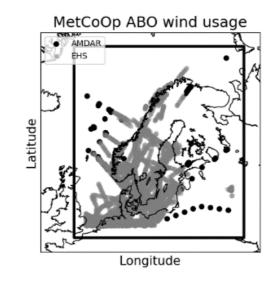
Within the e-suite **AROME-FR**

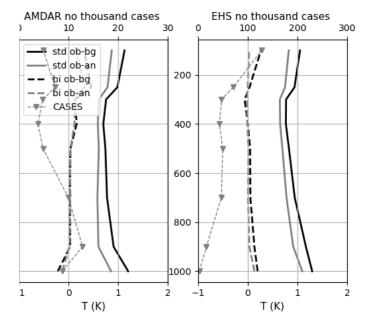

Work of M. Martet

ACC and RD A Consortium for COnvection-scale modelling Research and Development

Mode-S observations

In the next parallel e-suite **AROME-FR (EnVar)**


Within the MEPS/MetCoOp



 Quality and coverage of EMADDC T improved substantially (today both Modes EHS wind and T data comparable with AMDAR)

Impact:

- AROME-FR: large and clear impact below 150 hPa
- MetCoOp: neutral impact on average (lots of other data assimilated), improved individual weather situations.

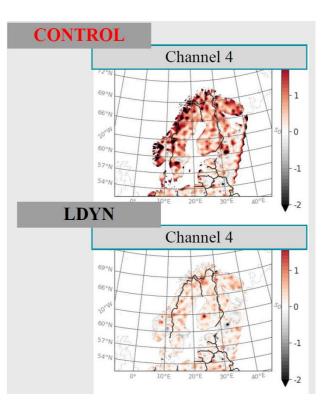
Work of Roohollah Azad, Magnus Lindskog, Siebren de Haan and Martin Ridal, Idir Dehmous

⇒ EnVar enhances the impact of Mode-S data with a better handling of vertical correlations within the background error covariances.

5

In **HARMONIE-AROME** systems of various HIRLAM centers

M=MHS A=AMSU-A AT=ATMS I=IASI SEV=SEVIRI C=Cris MW2=MWHS-2									
Satellite/ Center	N18	N19	N20	NPP	MET-B	MET-C	FY3D	FY3E	MT-11
MetCoOp	А	M,A	AT, <mark>C</mark>	AT, <mark>C</mark>	M,A,I	M,A,I	MW2		SEV
AEMET	А	M,A			M,A,I	M,A			SEV
Met IE	A	M, A	AT	AT	M, A, I	M, A., I	MW2		
DMI	А	M,A	AT,C	AT	M,A,I	M,A,I	MW2		
AR-ARC	А	M,A	AT,C	AT,C	M,A,I	M,A,I	MW2		
NL-AR	А	M,A	AT	AT	A, M	A, M	MW2		

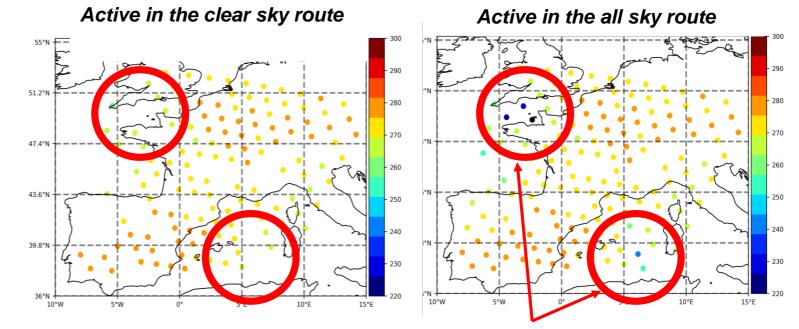

Oper > 3m, Oper < 3m, Preop. <3m, Preop. >3 months but not in oper. yet, in R&D

- Substantial work on research, pre-operational and operational implementation
- Use of retrieved/dynamic surface emissivity AMSU-A & MHS window channels over land and sea-ice improved FG departures and more observations can be used
- Configuration to be applied for EUMETSAT/ESA mission AWS

Work of Stephanie Guedj, Magnus Lindskog, Reima Eresmaa, Roger Randriamampianina

ACC RD A Consortium for COnvection-scale modelling Research and Development

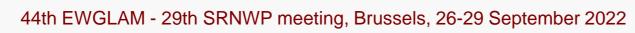
Mean FG dep. for classification-based and dynamic emissivity for Ch-4 AMSU-A



All-sky direct assimilation of microwave sensors

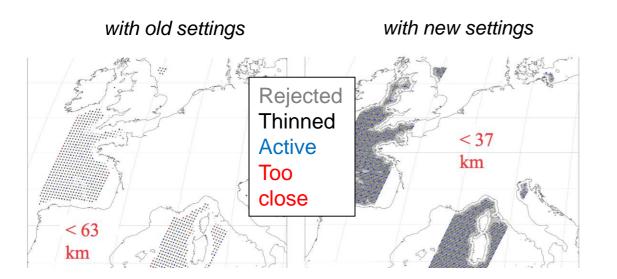
In preparation for thenext parallel e-suite AROME-FR cy48

- The use of the ECMWF all sky route for microwave observations is under tests and provide promising impacts on AROME gust winds and precipitation forecasts.
- Considered sensors: MHS, MWHS2, GMI, AMSR2


MHS observations – channel 5

TB depressions - indicator of scattering within clouds

ACC and RD


Work of Mary Borderies and Philippe Chambon, in collaboration with Alan Geer, Roohollah Azad and Roger Randriamampianina

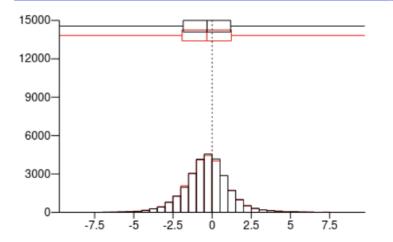
High-resolution scatterometer data

Within the current e-suite AROME-FR cy46

The assimilation of high resolution scatterometer data (25km), with a 50 km thinning leads to x4 more data in the 3D-Var AROME and improved forecast of surface winds and relative humidity.

Work of Christophe Payan

In the next e-suite **AROME-FR cy48**


Impact of HY-2B and 2C scatterometers data on first guess fits to ASCAT winds

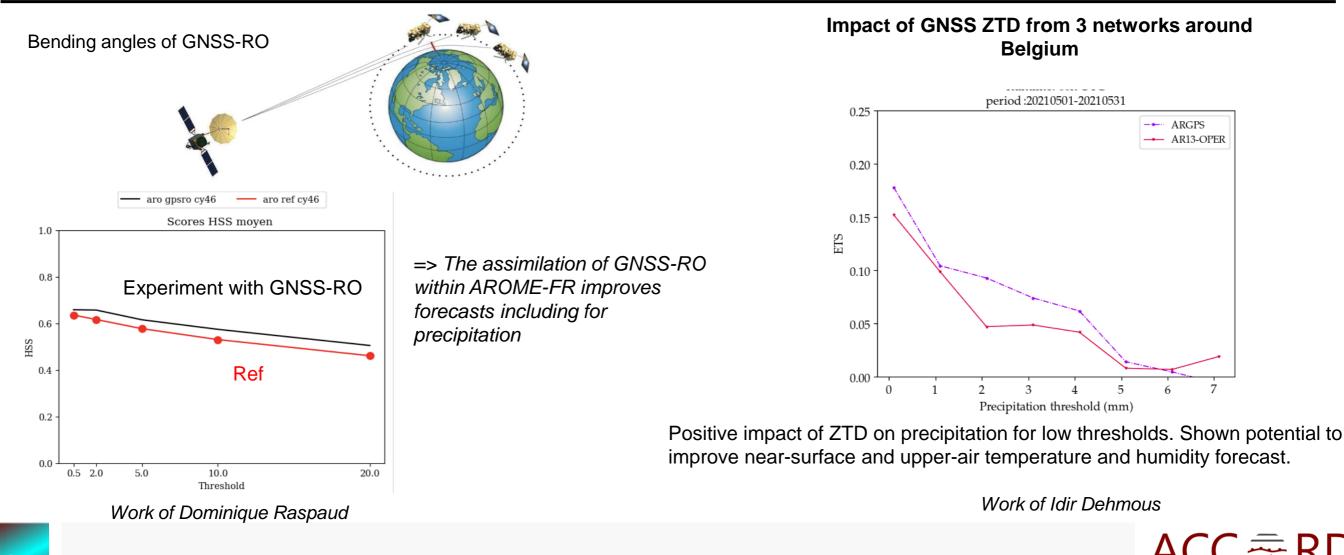
ASCAT Wind10m (2an)-speed Globe

Used wind data

MetOp-3(C) ASCAT

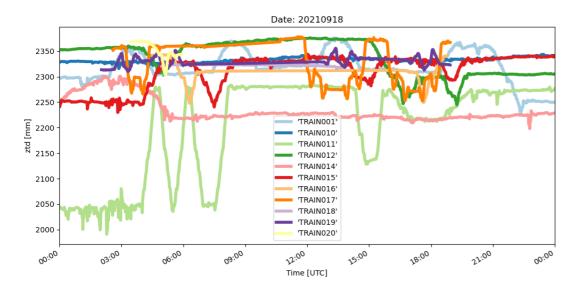
fg departure										
nb= 28008 (ref= 28008) rms=	1.55	(1.61)	L					
mean= -0.332 (-0.341) std=	1.51	(1.57)	π					
min= -11.8 (-13.8) max=	11.9	(13.1)	L					

=> The assimilation of HY-2B and 2C HR scatterometers data improves the first guess fit to ASCAT observations

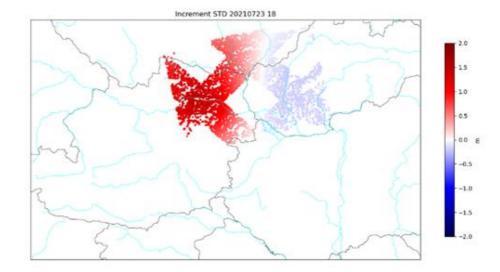

GNSS-based observations

Within the current e-suite AROME-FR cy46

Experimental in the **AROME-BE**


A Consortium for COnvection-scale modelling

Research and Development



Tropospheric delay observations under evaluation

Time series of ZTD from moving trains in Austria.

Interferometric Synthetic Aperture Radar (InSAR) tropospheric delay increment in obs. space.

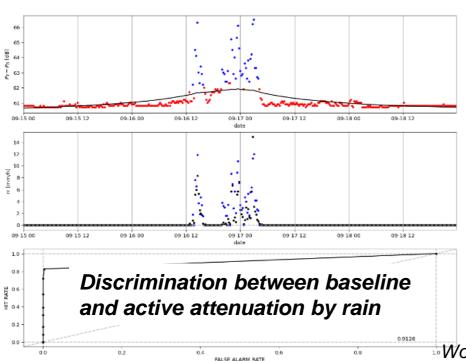
Data from 10 trains per day are now available for passive assimilation in AROME-AT.

Relative changes of slant tropospheric delay over a short period are converted to absolute delays by adding first guess values before assimilation.

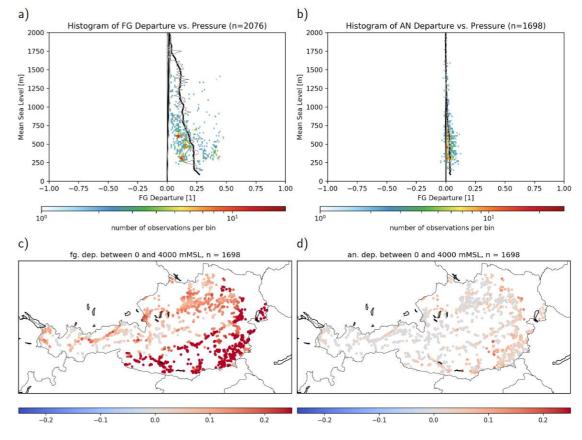
=> These novel tropospheric delay observations possess significant systematic errors, development of a robust bias correction is essential.

Work of Florian Weidle

Work of Florian Meier


A Consortium for COnvection-scale modelling Research and Development

Progress with microlinks feasibility studies


- Attenuations in microwave links related to precipitation high.res and rapid delivery
- Links processed by AI or a fast factor graph algorithm.

link plc1-kls3 (3.56 km), AMP 1821 (1.33 km away)

 Simple assimilation applied – to be improved with 1D+3DVar rain rate assimilation)

FG and An departures for specific humidity Using a simple (rain = 100% humidity) assimilation in AROME-AT 3D-Var

Work of Peter Smerkol and Phillip Schefknecht

ACC RD A Consortium for COnvection-scale modelling Research and Development

- Refined methods to better exploit existing radar data sets, especially OPERA
- Mode-S data now massively used, impact depends on the assimilation method
- Increased use of clear-sky and now also all-sky radiances and other satellite products (winds), including advanced surface properties estimation and bias correction
- Exploitation of alternative obs. sources (e.g. PWS, SPOs, microlinks, GNNS-related data, ...)

Thank you for attention!

benedikt.strajnar@gov.si

