ACC = RD

A Consortium for COnvection-scale modelling Research and Development

Preliminary results at 500m and 200m with AROME over the Alps with physics adaptation

E. Bazile (ACCORD/AROME CSC - Météo-France/CNRM) L. Rogel (DE_330), F. Voitus, R. Honnert, L. Auger, Y. Seity EWGLAM/SRNWP, Reykjavik 25-28 September 2023

ACC = RD

A Consortium for COnvection-scale modelling Research and Development

Impact of "pseudo 3D effects", shallow convection and dynamics options for AROME-500m and below

E. Bazile (ACCORD/AROME CSC - Météo-France/CNRM) L. Rogel (DE_330), F. Voitus, R. Honnert, L. Auger, Y. Seity EWGLAM/SRNWP, Reykjavik 25-28 September 2023

Outline

- "pseudo 3D effects" in the turbulence based on Goger et al. (2018) in AROME
- AROME @ 500m over Austria for a convective case 18 August 2022
- The COMBLE case with AROME 1.25km and 500m
- Preliminary test at 200m over Austria

- Since cy48t2 horizontal gradients are available in the AROME physics (Honnert and El Khatib (2020))
- For complex terrain: Goger et al. (2018)

$$\frac{\partial \overline{e}}{\partial t}\Big|_{\text{shear}} = (C_s \Delta x)^2 \left[\left(\frac{\partial \overline{u}}{\partial x} \right)^2 + \left(\frac{\partial \overline{v}}{\partial y} \right)^2 + \frac{1}{2} \left(\frac{\partial \overline{u}}{\partial y} + \frac{\partial \overline{v}}{\partial x} \right)^2 \right]^{\frac{3}{2}}$$

where C_s is chosen to be the Smagorinsky constant.

- Preliminary results showed during the ACCORD ASM (March 2023):
 - Very small impact of this additional term even at 500m over the Alps
 - The horizontal component of the TKE dynamical production is only 5-8% of the total

- Since cy48t2 horizontal gradients are available in the AROME physics (Honnert and El Khatib (2020))
- For complex terrain: Goger et al. (2018)

$$\frac{\partial \overline{e}}{\partial t}\Big|_{\text{shear}} = (C_s \Delta x)^2 \left[\left(\frac{\partial \overline{u}}{\partial x} \right)^2 + \left(\frac{\partial \overline{v}}{\partial y} \right)^2 + \frac{1}{2} \left(\frac{\partial \overline{u}}{\partial y} + \frac{\partial \overline{v}}{\partial x} \right)^2 \right]^{\frac{3}{2}}$$

where C_s is chosen to be the Smagorinsky constant.

- Preliminary results showed during the ACCORD ASM (March 2023):
 - Very small impact of this additional term even at 500m over the Alps
 - The horizontal component of the TKE dynamical production is only 5-8% of the total
- BUT ... the horizontal derivative have been computed on the $\,\eta$ coordinates and not $\,z$

Domains for TEAMx

AROME @ 500m Level =120 ~ 2.5m

From L. Rogel, F. Voitus

7

AROME @ 500m Level =120 ~ 2.5m

8

From L. Rogel, F. Voitus

AROME @ 500m Level =120 ~ 2.5m

EWGLAM/SRNWP Reykjavik 25-28 September 2023

9

A Consortium for COnvection-scale modelling Research and Development

Horizontal mixing length

$$\frac{\partial \overline{e}}{\partial t}\Big|_{\text{shear}} = (C_s \Delta x)^2 \left[\left(\frac{\partial \overline{u}}{\partial x} \right)^2 + \left(\frac{\partial \overline{v}}{\partial y} \right)^2 + \frac{1}{2} \left(\frac{\partial \overline{u}}{\partial y} + \frac{\partial \overline{v}}{\partial x} \right)^2 \right]^{\frac{3}{2}}$$

where C_s is chosen to be the Smagorinsky constant.

EWGLAM/SRNWP Reykjavik 25-28 September 2023

10

-

Horizontal mixing length

$$\frac{\partial \overline{e}}{\partial t}\Big|_{\text{shear}} = (C_s \Delta x)^2 \left[\left(\frac{\partial \overline{u}}{\partial x} \right)^2 + \left(\frac{\partial \overline{v}}{\partial y} \right)^2 + \frac{1}{2} \left(\frac{\partial \overline{u}}{\partial y} + \frac{\partial \overline{v}}{\partial x} \right)^2 \right]^{\frac{3}{2}}$$
where C_s is chosen to be the Smagorinsky constant.
$$L_{\text{smag}}^{(1)} = c_{\text{smag}} \sqrt{\Delta x \cos \alpha_x \Delta y \cos \alpha_y}$$

$$\alpha_x = \arctan \frac{\partial z_S}{\partial x} \quad \alpha_y = \arctan \frac{\partial z_S}{\partial y}$$
Modified Smagorinsky (1963) with the slope

From Leo Rogel, F. Voitus

Research and Development

A Consortium for COnvection-scale modelling

Horizontal mixing length

$$\begin{aligned} \frac{\partial \overline{\mathbf{e}}}{\partial t} \Big|_{\text{shear}} &= (C_s \Delta x)^2 \left[\left(\frac{\partial \overline{u}}{\partial x} \right)^2 + \left(\frac{\partial \overline{v}}{\partial y} \right)^2 + \frac{1}{2} \left(\frac{\partial \overline{u}}{\partial y} + \frac{\partial \overline{v}}{\partial x} \right)^2 \right]^{\frac{3}{2}} \end{aligned}$$
where C_s is chosen to be the Smagorinsky constant.

$$\begin{aligned} L_{\text{smag}}^{(1)} &= c_{\text{smag}} \sqrt{\Delta x \cos \alpha_x \Delta y \cos \alpha_y} \\ \alpha_x &= \arctan \frac{\partial z_S}{\partial x} \quad \alpha_y = \arctan \frac{\partial z_S}{\partial y} \end{aligned}$$
Modified Smagorinsky (1963) with the slope

$$\begin{aligned} W_{\text{M}} &= \left(\frac{\Delta_0}{\sqrt{\Delta x \Delta y}} \right)^{\alpha} \frac{\sqrt{U^2 + V^2}}{\left[(\partial_x V)^2 + (\partial_u U)^2 \right]^{1/4} \left[(\partial_x U)^2 + (\partial_y V)^2 \right]^{1/4}} \\ L_{\text{W}}^{(0)} &= \min \left[L_{\text{W}}, L_{\text{smag}}^{(0)} \right] \end{aligned}$$
From Leo Rogel, F. Voitus

EWGLAM/SRNWP Reykjavik 25-28 September 2023

A Consortium for COnvection-scale modelling Research and Development

Impact of horizontal mixing length

EWGLAM/SRNWP Reykjavik 25-28 September 2023

13

ACCL CARE KD A Consortium for COnvection-scale modelling Research and Development

AROME-500m : 18 August 2022 00h: Rain +48h-24h

AROME with reduced shallow (GQ0K)

AROME with reduced shallow and Goger (GPX4)

From Geerts et al. (2022, BAMS)

Cold-Air Outbreaks in the Marine Boundary Layer Experiment – COMBLE

- Funded by U.S. DOE ARM program
- 1 Dec 2019 31 May 2020
- AMF1 with AOS at Andenes
- Instrument suite at Bear Island

Courtesy T. Juliano (NCAR)

COMBLE

- 3 configurations of the NH model AROME over Svalbard
- 1.25 Km 90 vertical levels (similar to AROME version used over
France for the dynamics and physics). (1500x1920 grid points)
- 500m and 90 vertical levels (1st level at 5m) (1024x2430 grid points)
- 500m and 120 vertical levels (1st level at 2.5m) (1024x2430 grid points)

T2m AOME 1.25km 13th March 2020 11TU

T2m AOME 500m 13th March 2020 11TU

COMBLE with AROME 1.25km

EWGLAM/SRNWP Reykjavik 25-28 September 2023

COMBLE with AROME 1.25km

EWGLAM/SRNWP Reykjavik 25-28 September 2023

COMBLE with AROME 500m L90

A Consortium for COnvection-scale modelling

Research and Development

COMBLE with AROME 500m L90

AROME 200m : 2000x 1152 L90

EWGLAM/SRNWP Reykjavik 25-28 September 2023

3 November 2022 : 10m Wind Speed

10m wind: Mean MAE from: 20221103 to 20221103

3 November 2022 : 10m Wind Speed

Some preliminary conclusions :

- The horizontal gradients are now computed on z and not $\boldsymbol{\eta}$
 - The horizontal dynamical production of TKE is significantly increased → creates instability with the default L_horiz
 - The Wang et al (2021) formulation for L_horiz is promising ...
 - More evaluation is needed at 500m ...with probably some adaptation/tuning/scale aware shallow convection
- Still small impact of the "Goger term" however we can expect more impact in stable boundary condition in winter in the Alpine Valley
- Very preliminary @ 200m over the Alps
 - Need to be careful for the dynamics options with at least NSITER=2 and dt=6s before testing physics impact ...

