

Improving the solver efficiency in the LFRic LAM

Christine Johnson

With thanks to the dynamics research team (Ben Shipway, Tom Melvin, Ian Boutle and Benjamin Buchenau).

What is the LFRic solver? Part 1

The governing equations can be written as

 $R(x^{n+1}) = 0$ where $x = (u, \rho, \theta, \Pi)$.

This includes dynamics forcings with semi-implicit timestepping, fast and slow physics and transport.

Let the state at time t^{n+1} and iteration k + 1 be

$$x_{k+1}^{n+1} = x_k^{n+1} + x'_k, \qquad x_0^{n+1} = x^n.$$

and solve using a quasi-Newton method:

$$L(x^*)(x'_k) = -R(x_k^{n+1})$$

where *L* is an approximation to the Jacobian, using the basic state $x^* = x^n$.

What is the LFRic solver? Part 2

Solve a mixed solve equation using an iterative Krylov solve method and use the associated approximate Helmholtz equation as the preconditioner.

Mixed so

Mixed solve
$$\begin{pmatrix} M_u & G \\ D & M_p \end{pmatrix} \begin{pmatrix} u' \\ p' \end{pmatrix} = \begin{pmatrix} -R_u \\ -R_p \end{pmatrix}$$
Reduce to one equation by substituting for u' and a diagonal M_u Helmholtz equation $Hp' = \hat{R}$

There are **4 Quasi-Newton** iterations $x_{k+1}^{n+1} = x_k^{n+1} + x'_k$ on every timestep.

So mixed solve is solved 4 times.

+ about 5 GCR iterations for each mixed solve + about 50 BiCGstab iterations of Helmholtz for each GCR iteration.

How can we make the solver faster for limited-area regional models?

- **1. Orthogonal Mesh:** LAMs have a (rotated-pole) latitude-longitude mesh. i.e. it is orthogonal. This removes the off-diagonal terms of M_u so maybe we don't need the mixed solve.
- **2. Orography:** But what about the impact orography? a terrain following vertical coordinate isn't orthogonal.
- **3. Multigrid:** The global LFRic model uses a multigrid preconditioner, so can we make use of that in the regional LFRic model?

Non-Orthogonality

Cubed-sphere mesh: a non-orthogonal mesh

Finite-element spatial discretization allows us to deal with non-orthogonality in LFRic – but we need to run the mixed solve as well as the Helmholtz.

This gives a dense massmatrix M_u - which contains the correlations of the finite element for each face of the cell.

Exploiting orthogonality of the lat-lon mesh

An orthogonal mesh means it is possible to run the model without the mixed solve.

Hovmöller plots from the evolution of a gravity wave on a flat, cartesian mesh.

With mixed solve, time taken=65s

Helmholtz-only,

time taken=10s

125

Orography

The terrain-following coordinate gives a nonorthogonal mesh.

- This causes problems with convergence of the mixed solve. For our real 1.5km UK domain, extra smoothing needed to be applied to the orography for the model to run.
- It is not possible to run with Helmholtz only.
- The UM lags the 'bendy terms' associated with the orography, so maybe we can use a similar approach.

going over mountains.

What is the lagged orography approach?

Terrain-following vertical coordinates.

Remove the terms (in the finite-element mass matrix for wind) corresponding to vertical-horizontal nonorthogonality. Only in the LHS of the solver. They are still there in the mass matrix on the RHS.

Lagged orography approach

Lagged orography approach: Separate the mass matrix M_u into two: $M_u = M_{uu} + M_{uw}$ and lag the terms associated with M_{uw} at the previous iteration. This is equivalent to replacing M_u with M_{uu} in the LHS of the mixed solve. i.e. remove M_{uw} .

Multigrid

- Use the existing multigrid method that is used in the global LFRic model.
- This is used to solve the Helmholtz equation, instead of BiCGStab
- How to deal with the lateral boundary conditions?

Overall impact on efficiency

50% that of Krylov solve. (Flat 'aquaplanet' domain). Using **lagged orography** means that we can run UK domain without smoothing orography. Plus Helmholtz only gives furtherreduction (30% of cost) and lower than the UM.

Full model results

768 x 1024 domain, 70 levels, 24 hour run

Conclusions

The lagged orography approach has been the key to unlocking the ability to make the solver more efficient. This is removing the impacts of non-orthogonality in the LHS of the solver but doesn't degrade the quality of the result – and has allowed us to use less orography smoothing.

- Introducing lagged orography means the mixed solve requires less iterations we are letting the quasi-Newton iterations do the work instead.
- Introducing lagged orography also allows the solver to work in Helmholtz-only mode and allows multigrid to work. These both give further improvements in the efficiency.