





# Recent developments in ARPEGE/AROME physics

Yann Seity, Salomé Antoine, Eric Bazile, Yves Bouteloup, Jonathan Guth, Rachel Honnert, Ingrid Etchevers, Adrien Marcel, Sébastien Riette, Benoît Vié ...

### **Outline:**

- ARPEGE developments
  - CY48t1\_op1 content
- AROME 1,3 km developments
  - radiation
  - PHYEX (turbulence, shallow convection, microphysics)
  - aerosols
  - diagnostics



### cy48t1\_op1 Arpege physics evolution

- New version of the IFS deep convection scheme (cy47r3) with a CAPE + moisture convergence closure
- Météo-France development to modulate closure to local resolution to avoid detrimental rainfall accumulation near the coast in the high-resolution area
- TKE production by deep convection
- EcRad radiation scheme with McIca solver
- Addition of a deposition rate within the microphysics scheme to reduce false fog alarms



### The 28 november 2021 case





### The 28 november 2021 case





### Status of radiation codes used in oper/e-suites

|        | OPER (CY46T1)          |      |                              | E-SUITE (CY48T1) |                 |                              |
|--------|------------------------|------|------------------------------|------------------|-----------------|------------------------------|
|        | SW                     | LW   | Aerosols                     | SW               | LW              | Aerosols                     |
| AROME  | Fouquart-<br>Morcrette | RRTM | Tegen<br>2D clims<br>(6 var) | EcRad<br>(SRTM)  | EcRad<br>(RRTM) | CAMS3D<br>clims<br>(12 var)  |
| ARPEGE | SRTM                   |      |                              |                  |                 | Tegen 2D<br>clims<br>(6 var) |

→ 48T1\_op will be oper in the begining of 2024



### Aerosols: EcRad+CAMS(CLIM) versus EcRad+Tegen



→ On July, improvements on surface pressure with CAMS Aerosols Clim

### **Evaluation of AROME surface hourly SW radiation:**

- Positive bias (+18W/m²), mainly when clouds are present in the model and in observations.
- Errors can come from cloud fractions, or optical depths computations





Mean bias when cloud fraction > 95 % is small (1W/m²), but due to compensating errors of positive bias for high clouds and negative one for low clouds

### **PHYEX=Externalised MesoNH Physics**

- PHYEX repository <a href="https://github.com/UMR-CNRM/PHYEX">https://github.com/UMR-CNRM/PHYEX</a>
  - turbulence, shallow convection (EDKF only), microphysics (ICE3, LIMA)
  - source code ready for GPU transformations
  - compatible with Meso-NH 5.6, AROME 49t1 and LMDZ. AROME setup modified to use the initialisation routines of Méso-NH (enabling all the options)
  - contains stand-alone programs (« dwarves ») for technical tests
  - python binding under development
- PhyexFortranTool repository https://github.com/SebastienRietteMTO/PHYEX-fortran-tool
  - python tool to transform the source code for GPUs (work in progress)







## Turbulence: Modifications for low clouds over sea (in CY48T1\_op):

December 15th 2021 12TU:







- In mixing length computation (bl89) :
  - → Corrected coefficients (bf from Pascal Marquet),
  - → Lup modified as in ARPEGE (more mixing in the top of clouds)
- Positive impact in that case (no impact on scores)



### Improvements of EDKF/EDMF:



Important positive SW biases retrieved and assigned to low cloud deficit in PNT models (Météopole-flux, 2016).

Large amount of non-stratiform clouds maybe due to poor stratocumulus representation.

Improvements on shallow convection scheme in AROME and its interaction with turbulence, condensation and precipitating processes

#### AROME modifications tested in 1D experiments vs LES



Some changes: detrainment / entrainment, vertical velocity equation, condensation PDF ...

## Microphysics: LIMA news (available in PHYEX)



### Microphysics: LIMA news (available in PHYEX)

More flexible choice for each variable (1 or 2-moments)

Full 2-moments with hail: realistic hail along supercell track (idealized supercell)

New snow properties (following J. Wurtz PHD work in ICE3)100 200 300 400 500 6



Work on supercooled liquid water (M. July-Wormit PHD)

ICICLE (2019)

SENS4ICE (2023)

liq/ice ratio:

| Semantic | Comparison | Compariso

LIMA better than ICE3, but still too icy

acc hail

Investigating ice initiation, impact of aerosols, microphysical processes...

## Aerosols/Microphysics link: CAMS Aerosols use in LIMA (SOFOG3D IOPs)



Significant improvment with the use of daily CAMS aerosols in LIMA

### Towards oper AROME-Dust over the Sahel area

- Surface : As ALADIN-Dust emissions (M. Mokhtari) in SURFEX
- Atmosphere: 3-moments Log-normal Dust distributions (ORILAM comming from Meso-NH-C)
- Work at Climate team (J. Guth and V. Guidard) since 2022 in order to setup an operational configuration (LBCs from MOCAGE) → daily runs currently available





### Modified/New diagnostics

Lightning diagnostic improvement **X** 



Precipitation type improvement **₩** •

- New storm helicity diagnostic
- Pressure of the top and base of deep convection
- Thermical vertical velocity (for gliding)
- Snow depth diagnostic









## Lightning diagnostic improvement

- Based on the McCaul (2009) parametrization, calibred by S.
   Radanovics in Arome (2021)
- Operationnal since summer 2022 (J-M. Piriou and Y. Seity)

But ....

- Overestimation during the winter 2022/2023
- Take into account updraft size
  - Multiplication by (min(zbase,1800)/1800)<sup>2</sup>
    zbase : altitude of cloud base

More details : jean-marcel.piriou@meteo.fr







## Lightning diagnostic improvement

- 9 January 2023 3TU, cumul. 0-3h
- Cumulative amounts decrease and are closer to observations



More details: jean-marcel.piriou@meteo.fr









### Thermical vertical velocity

Produced for gliding

 $V_z = \alpha (\beta Q_s H)^{1/3}$  (adapted from J. W. Glendening formula)

- Vz: Thermical vertical velocity
- $\alpha = 1.9$  (tuned by V. Curat)
- β: Buoyancy constant = ratio of g (gravity)/ Ts (mean surface temperature)
- Q<sub>s</sub>: Sensible heat flux
- H: Boudary Layer Height

More details: rachel.honnert@meteo.fr







## Thermical vertical velocity

### Density of observed and simulated vertical velocities

#### During several flights



### Only above complex terrain



More details: rachel.honnert@meteo.fr









### **Next steps:**

- Test new aerosols climatologies in ARPEGE
- Fast EcRad tests in AROME (ecckd)
- Towards oper use of daily aerosols for AROME (at least dusts for radiation) from CAMS or MOCAGE.
- Tests new LIMA options in AROME CY49T1
   (2-moments for liquid only, for fog, link with aerosols)
- EDKF modifications in real cases
- ARPEGE-NH with AROME physics, technically working, some science already started









# Thank you for your attention! Questions?

Yann Seity, Salomé Antoine, Eric Bazile, Yves Bouteloup, Jonathan Guth, Rachel Honnert, Ingrid Etchevers, Adrien Marcel, Sébastien Riette, Benoît Vié ...