Update on the Met Office Regional Atmosphere and Land Configuration (RAL3)

<u>Anke Finnenkoetter</u>¹, Martin Best¹, Mike Bush¹, Paul Field¹, Charmaine Franklin², Adrian Lock¹, Susan Rennie², Belinda Roux²

¹ Met Office, UK

² Bureau of Meteorology, Australia

RAL - the "Regional Atmosphere and Land" configuration

- RAL provides a single configuration for use in NWP operations, climate applications and research projects and ensures a coherent programme of model development
- RAL2 used operationally since December 2019
- RAL3 operational implementation planned for summer 2024
 - o Bi-modal cloud scheme
 - CASIM double moment microphysics
 - Changes to land surface configuration
 - o Unification of mid-latitude and tropical RAL configurations

RAL3 was released in August 2022 showing overall improvements over RAL2

- Exacerbation of existing cold temperature bias
- Improved representation of clouds
- Improved visibility
- Precipitation worse against gauges, improved against radar. Distributions improved.

Radar Holes

Example of problem highlighted by colleagues at the Australian Bureau of Meteorology (BoM)

Reflectivity holes appearing in extreme conditions where highest reflectivities and rain rates are expected

Radar reflectivity due to rain alone

Values at 979 m (level 14) ; 20220226T08 fc hour 100

- Rain collecting rain → change of number concentration per timestep too large in extreme conditions
- Microphysics detect significant mass but no number and evaporate the rain
- Later in the same timestep the vapour is condensed to cloud
- Cloud is converted back to rain in following timesteps
- Abrupt change from rain to cloud causes radar holes
- CFL limit added: Removal of number concentration capped at rate of 0.5

🕷 RAL3

Limiting rate of number concentration decrease per timestep removes holes in radar reflectivity fields.

🕈 RAL3

Darwin 04/03/2017 12Z (T+6) Reflectivity at 1km (dbz)

Hot spots

Example over South America: $T_{1.5m}$ can be 30C warmer at isolated points

- Only last for one timestep, recovering to normal values on subsequent timesteps
- Very small impact on time-mean surface or atmospheric temperatures
- Sufficiently rare to be unlucky to see in e.g. hourly instantaneous output
- More prominent in maximum (timestep sampled) temperatures

Example from BoM 20211019 ACCESS-A maxT at 0200 UTC, bt=1818

1.5m T

UKV case study example (RAL3)

- Rapid and significant variations in amount of SW radiation reaching the surface
- note the radiation-cloud timestep is 5 minutes so clouds can move significantly between calls

Successive timesteps from left to right with the hot spot occurring only for one timestep (middle column)

- Surface Energy Budget includes contributions from net SW + net LW + SHF + LHF
- Hot spots were associated with dramatic changes in downwelling surface SW
- Turbulent sensible heat flux dependent on exchange coefficient C_H
- C_H calculated from input fields at start of timestep, very sensitive to surface stability
 - \rightarrow Solution: update $\rm T_{surf}$ within timestep

Summary

- RAL3 showed unphysical model behaviour in form of radar holes and hot spots
- Bug fixes implemented in releases of RAL3.1 and RAL3.2
- Minor impact on NWP verification statistics due to localised nature of the problems

more on LFRic in Christine Johnson's talk Thursday 11:00

What's next?

- Transition from UM to LFRic
- Initial focus on like-for-like replacement of RAL3.2
- RAL4 development building on RAL3-LFRic
- Operational implementation of regional LFRic models at RAL4 science (currently planned for summer 2027)