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The NCAR/UCAR AI Web
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AI2ES: Developing Trustworthy AI Systems with User and Domain Expert Guidance
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CISL: David John Gagne, John Schreck, Charlie Becker, 
Gabrielle Gantos 
MMM: Julie Demuth, Chris Wirz, Mariana Cains
RAL: Bill Petzke
Unidata: Thomas Martin

Vision: AI2ES is developing novel, physically based AI 
techniques that are demonstrated to be trustworthy, and will 
directly improve prediction, understanding, and communication 
of high-impact weather and climate hazards.



Motivation: The Limits of Convection-Allowing Models
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Convection-allowing NWP 
models (CAMs) can resolve 

individual storms, their modes, 
and their intensities.

Storm hazards (tornadoes, hail, 
high winds, flash floods) depend 
on processes unresolvable for 

CAMS. 



Motivation: Machine Learning Hazard Probabilities Derived from CAMs 
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Given reports and lots 
of prior model output, 

machine learning 
models can estimate 
probabilities of severe 

hazards.

What else can 
machine learning infer 

from CAM output?

Storm Properties?
Timing?

Impacts?
Uncertainty?

Grid-Based HREF Random Forest (Loken et al.) Grid-based HRRR Neural Net (Sobash et al.)

HREF+SREF Gradient Boosting (Hempel et al.)
Storm-based HREF Random Forest  (Burke/Gagne et al.)



1. Supervised learning using hand-labeled CAM 
storm objects and ML algorithms

1. Unsupervised/semi-supervised learning 
using CAM storm objects, ML, and clustering 
algorithms

Goal: Develop techniques to objectively identify convective mode in convection-
allowing models (CAMs) using machine learning (ML) algorithms.

Storm Mode: Motivation



Storm Mode: Segmentation, Tracking and Labeling
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Hagelslag: segment storms and track with image 
processing techniques

Hand Labeling: web interface

Challenge: segment storms with different spatial scales

Solution: define storms based on two radar reflectivity 
thresholds and merge adjacent objects

Challenge: disagreements about storm mode among labelers

Solutions: hierarchical classification, confidence ratings, 
multiple raters for each storm.



Model Architectures
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Challenge: Storm does not fit entirely within image patch

Solutions: use summary metrics based on full storm extent, 
expand patch, use a grid-based segmentation

Challenge: Pre-processing pipeline changed during project

Solutions: relabel quickly using proxy labels and bulk 
labeling of storms based on clusters



Model Performance
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Storms with Predicted Mode Agreement
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Challenge: evaluate storm mode models without a massive 
hand labeling effort

Solution: examine consistency among storm labels and 
conditional probability of different severe hazards given mode



Storm Mode Visualization Pipeline
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HRRR Zarr Output on 
AWS

Hagelslag Storm 
Extraction

ML Storm Mode 
Inference

Mode Prediction 
CSV Files

Storm Object 
Geojson Files

d3.js Data 
Backend

Plotly Javascript 
Visualization

ncar.github.io/modeview



CRISIS

• Tornado risks and impacts are influenced by intersecting 
meteorological and societal factors

• The goal of integrated tornado risk modeling (e.g., Strader et 
al. 2016) is to understand and reduce impacts on people

• Modeling of population mobility in tornado risk models is 
limited
– Many studies assume a static population (e.g., Hatzis et al. 2020)
– Some recent work accounts for day-night population differences 

(Strader et al. 2022)
– Limited understanding of uncertainties in population estimates and 

how those intersect with dynamic meteorological data
• How does one integrate spatio-temporally varying 

meteorological and societal data into a convergent risk model?  
• What can we learn from this process about integrated tornado 

risks and associated uncertainties?
What is a more robust estimate of the 
exposure to a tornado? What is the 
uncertainty?

Leads: David John Gagne (CISL), Olga Wilhelmi (RAL), Rebecca Morss (MMM) 



CRISIS: Integration
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Model Hazard Intersect with Population Combine Tornado and 
Exposure Probabilities

Generate probabilities of tornado, 
probability distributions of how many 
tornadoes are expected to occur, and 
10,000 synthetic tracks.

Intersect tornado tracks with a 
time-interpolated 100 m grid of 
population density data and 
sum the number of people 
exposed within each track. 

Determine probability of exposure 
from number of tracks impacting 
population and aggregate with 
tornado and count probabilities to 
produce unconditional exposure 
estimate.



CRISIS: Conditional Probabilities
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CRISIS: Integrated Probabilities
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CRISIS: Population Trends



Evidential Deep Learning 
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Paper: Evidential Deep Learning: 
Enhancing Predictive Uncertainty 
Estimation for Earth System 
Science Applications



Decomposition of Uncertainty

Aleatoric Uncertainty Epistemic Uncertainty

Definition: Uncertainty from variation in data.
Estimated by: Single probabilistic AI model.
Reduce by: Gather more informative inputs

Definition: Uncertainty from variation in models.
Estimated by: Ensemble of deterministic AI 
models.
Reduce by: Gather more examples or use 
simpler models.

Definition: Combined aleatoric and epistemic uncertainty.
Estimated by: 

1) Ensemble of probabilistic AI models
2) Single “evidential” (higher-order probabilistic) AI model
3) Bayesian AI models

Total Uncertainty
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Collaborators
John Schreck, Charlie Becker,
Gabrielle Gantos, Julie Demuth, 
Chris Wirz, Jacob Radford, Nick 
Bassil, Kara Sulia, Chris 
Thorncroft, Amy McGovern, Eliot 
Kim, Justin Willson, Kim Elmore, 
Maria Molina
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(i) Deterministic: 

Predict probabilities for classes

Loss = Cross-entropy

pk = Softmax(fw(T,Tdew,U,V))k

(ii) Evidential:

(Sensoy et al. 2018)
Predict evidence for classes

Loss = Evidential

ek = ReLU(fw(T,Tdew,U,V))k
𝛂k = ek + 1

Compute S, evidential u, 
and the probabilities pk
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ŷi = fw(xi)

μ 2

ɣ v β

(i) Deterministic:     

Predict values for the defined tasks

Loss = RMSE/MAE/etc

Number of outputs = 1

(ii) Parametric Gaussian 𝒩(μ,𝝈2): 

Predict the mean and variance for 
each task

Loss = NLL

Number of outputs = 2 

(iii) Parametric Normal-Inverse Gamma p(ɣ,v,⍺,β): 
(Amini et al. 2020)
Predict evidence for parameters for each task
Loss = Evidential,  Number of outputs = 4 
Post-prediction: Compute mean, aleatoric, and epistemic uncertainties

(i)

(ii)

(iii)

Linear

𝒩(μ,𝝈2)

p(ɣ,v,⍺,β)

Evidential Model Architectures
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Input (0 - 5 km above surface, every 250 meters)

➢ Temperature, Dewpoint, U-Wind, V-Wind

Probabilistic Forecast Example: Classifying Winter Precipitation Type

Target

➢ mPING Crowd-sourced reports of winter 
precipitation types
➢ Rain, Snow, Sleet, Freezing Rain

Data

➢ NOAA Rapid Refresh Vertical Profiles
➢ Interpolate from pressure to height coords
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Precipitation-type Validation
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How well does each type of uncertainty discriminate between easier and harder to classify events?



Regional Case Study
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Uncertainty Drivers
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MILES Group Python Packages
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• miles-guess (github.com/ai2es/miles-guess):
– Implementations of evidential neural networks, deep ensembles, and Monte Carlo dropout

• echo-opt (github.com/NCAR/echo-opt):
– Distributed hyperparameter optimization on HPC systems
– Supports GPU allocation, XAI visualization for hyperparameter settings

• hagelslag (github.com/djgagne/hagelslag): 
– Object segmentation, tracking, and data extraction for convection-allowing model output
– verification scores and plots

• bridgescaler (github.com/NCAR/bridgescaler): 
– Reproducible saving/loading of sklearn preprocessing scalers and transforms
– Custom scalers for groups of variables and image patches



Summary
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Evidential deep learning decomposes 
uncertainty to provide more physical 

insight and guide model updates. 

Email: dgagne@ucar.edu

Intersecting hazard and population 
data reveals particularly sensitive 

areas.

Diagnosing convective mode helps 
forecasters adjust their mental models 

of timing and hazards.


