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a assimilation

e In data assimilation we usually assume Gaussian observation
error distributions and characterized by their standard
deviations and correlations.

e Observation systematic errors (biases) needs to be handled.

e Observations affected by Gross errors can degrade the
analysis and subsequent forecast nd needs to be removed
prior to data assimilation. But we do not want to reject
accurate observations.

e Scale- and time differences between observations and model
usually included in the observation error part (representativity
and persistence error.

Gaussian probability
distribution function
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Observation errors in data assimilation

Effect of QC: Red-marked observation rejected

27.12.1999 — French storm 18UTC
= ECMWF Era interim analysis produced a low with min 970 hPa

= Lowest pressure observation (SYNOP: red circle)

—963.5 hPa (supported by
neighbouring stations)

—At this station the analysis
shows 977 hPa

—Obs —An=16.5 hPa!

« High density of good quality
surface data

(from Lars Isaksen och
Christina Tavolato, ECMWF)

ECMWF Analysis VT:Monday 27 December 1999 18UTC Surface: Mean sea level pressure
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Observation errors in data assimilation

Data rejection and VarQC weights — ECMWF Era interim

T

1112: VarQC-rejections: Flag1 (green), Flag2 (orange), Flag3 (re), MSL analysis (black)
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Observation errors in data assimilation

Effect of revised quality control
 New min 968 hPa

Low correctly shifted towards west and intensified in better agreement with surface
pressure observations

ECMWF Analysis VT:Monday 27 December 1999 18UTC Surface: Mean sea level pressure
ECMWF Analysis VT:Monday 27 December 1999 18UTC Surface: **Mean sea level pressure
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Estimation of ob

Standard deviations

and correlations

Biases

Identification
of
Gross errors

e Hollingswoth-Lonnberg (Tellus, 1986)

e Desroziers method (QJR, 2005)

e Bucanek/Bormann and Bauer (QJR, 2010)
Harris-Kelly (QJR, 2001)

Variational bias correction (Dee, 2005)

Bias correction simply based on averaged deviation
from model (Poli et al, JGR 2007), or on a 10-day
running mean (McPherson et al, MWR, 2008).
Applied for GNSS, assuming model unbiased.
Agusti-Panareda et al, QJRMS, 2009:
bias-correction assuming the night-time RS-92 is
bias-free, using the model as an intermediate.

Jarvinen-Andersson (QJR, 1999)
Variational quality control

Background check

Buddy check (Benjamin et al, MWR, 2004)
Adaptive QC (Dee et al, QJR, 2001)
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Modelling/represe

e Thinning of observations
e |[nflation of observation error standard
deviations
Standard deviations and correlations e Inter-channel observation error
correlation representation
e Spatial observation error correlation
representation

e Static bias correction methods

Biases e Adaptive
o ...
Blacklist
e e First guess check
Identification of Gross errors Buddy check

Variational quality control
Adaptive methods
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Thinning

lllustration GNSS thinning
a) 90 km, b) 40 km, c)
original raw (from
Lindskog et al., 2017)

Standard deviations and correlations
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Modelling/representation of errors

Identification of Gross errors

First guess check ([H(xp)]i —y:)* /oy, > FgLimx A

We partition the residual vector v as

i X
s [y] (3)

Buddy check

where x contains the residuals associated with suspect observations, and y those
associated with buddies. We then define corresponding blocks of the residual

B |z =z} 2\ _ \/5 * e covariance,
p—p( S—:. 5 g 5 = ; 3 e dt. S=[SI S!yl‘

Variational QC
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Discussion points

e Alternative methods for estimation of observation errors.

e Plans/experiences for modelling of observation error correlations
(spatial and inter-channel correlations).

e Alternative ways of handling of observation biases?

e Methods and ideas for rejected observations? Adaptive, ensemble
based, machine learning?

e Exchange of blacklist information?

e Inter-consortia comparisons of error estimation and handling?
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Desroziers method Q. J. R. Meteorol. Soc. (2005), 999, pp. 1-999

AIM: To compare used background- and observation-errors with theoretical ones calculated by
Desroziers method and exploit if revisions of error standard deviation specifications needed.

HOW: Use DA feedback statistics of residuals and innovations from parallel cy46 evaluation
experiments. Investigate plots of the current prescribe and the by desroziers method suggested

observation and background error values.
y"‘ Example for ABO temperatures
1

Vertical profile of sigmab/sigmao for airepy
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Desroziers method Q. J. R. Meteorol. Soc. (2005), 999, pp. 1-999

AIM: Estimate inter-channel observation error correlations

HOW: Use DA feedback statistics from innovations and residuals.
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Hollingsworth-Lonnberg method Tellus(1986), 38A, 111-136

AIM: To estimate background and observation errors.

HOW: Extrapolate innovations to zero distance and derive error standard deviations from intersect
with x-axis. Correlations from assumptions on either background or observation errors.
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Fig. 5. The variation at 200 mb of the {/,1) or longitudinal correlation with station separation: the dots show the
empirically determined average value for each 100 km “bin”, together with the number of station pairs in that bin. All
the data out to 3000 km was used in the least squares procedure to determine the fitting curve with a truncation of 10
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Andersson&Jarvinen Q.J . R. Meteorol. SOC. (1999). 125, pp. 691-122

AIM: To select appropriate check limits, FgLim for background check. Assumption is that
observations with errors outside Gaussian distribution are affected by Gross errors and should be

removed prior to the data assimilation.
where A= 1+0'§,,-/0'§J., FglLim is the rejection limit and

[H(x}p)]; denotes the projection of the model state on y; obser-
2.2 . vation, where the potential observation bias has been accoun-
([H(xp))i — i)~ /o, ; > Fglim X A E -
’ ted for. o,; and o, ; are the standard deviation of the observa-
tion error and background error equivalent, respectively.

HOW: Plots histograms and transformed histograms of innovations to identify when distribution
starts to deviate from Gaussian and where to put rejection limit.
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Obstool (based on P .Benachecks developments)

AIM: To set the thinning distances applied to high spatial density data in accordance with
estimated observation error correlation length scales. The spatial thinning is applied both to limit
data amounts and to compensate for our current lack of representation of spatial observation

error correlations.

HOW: Based on DA feedback statistics files, innovations are separated into observation error
correlations and background error correlations. From plots of the observation error correlation
part, appropriate thinning distance is estimated with distance when the observation correlation

drop to 0.2.
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Number of data in each bin as function of
distance between data pairs.
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