

Use of MET/METplus to study and test Machine Learning developments in emulating NWP global deterministic forecasts

Sebastian Cole & Pangu Weather Testing Team

EWGLAM 2023

www.metoffice.gov.uk

Introduction to Pangu Weather Testing

- Several ML Weather papers/models claiming similar performance to operational NWP systems
- Short project to explore publicly available Pangu ML model
- Key questions for project:
 - How does accuracy of ML models compare to current NWP systems?
 - What infrastructure is required to run ML models in production?
 - Can we run model trained with ERA5 reanalysis from Met Office analysis fields?
 - To what extent are physical processes learnt by ML models? Are fields realistic?

GM initialised Pangu Model 01/07/2018 - 07/07/2018 - T12

Stephen Haddad

Pangu Weather testing

- Multi-disciplinary team to analyse model, resulting in knowledge transfer
- Set up pipeline to run Pangu model with Met Office data and systems
- Produced forecasts and verified for two periods
 - Dec 2017- Feb 2018 and July-Sep 2018
- Initial exploration of learning of physical processes

Pangu Weather Testing Workflow

Stephen Haddad

MET Tools

MET is a verification package developed by the National Center of Atmospheric Research (NCAR) Developmental Testbed Center (DTC). METplus provides a suite of python wrappers.

Two forms of gridded verification against analysis were considered in the form of:

- GridStat
- SeriesAnalysis

Verification Strategy

- All forecasts verified 6 hourly
- Area aggregated scores were computed in line with WMO CBS specifications and regridded to 1.5 degree grid using area weighted mean.
- Mapped verification scores were regridded to ERA5 grid using area weighted mean.
- Verification against GM update analysis refers to analysis including observations from outside the operational DA window.
- Results here will focus on 850hPa temperature over the summer period of July to September 2018

Set Office Initial Results – Northern Hemisphere

Roger Harbord

Met Office Initial Results – Tropics

Temperature (K) @ 850hPa, Root Mean Square Error (Forecast - Analysis), 1.5deg grid

Roger Harbord

Initial Results – Southern Hemisphere

Temperature (K) @ 850hPa, Root Mean Square Error (Forecast - Analysis), 1.5deg grid

Roger Harbord

ME Comparison T+6

GM vs GM update

ERA5 Pangu vs ERA5

GM Pangu vs GM update

ERA5 Pangu vs GM update

Set Office ME Comparison T+12

GM vs GM update

ERA5 Pangu vs ERA5

GM Pangu vs GM update

ERA5 Pangu vs GM update

ME Comparison T+24

GM vs GM update

Met Office

ERA5 Pangu vs ERA5

GM Pangu vs GM update

ERA5 Pangu vs GM update

Summary of initial results

- Reproduced the results initially claimed by Pangu developers.
- Initialising Pangu from Met Office analysis hinders model performance, particularly at short leadtimes.
- Different relationship between error and leadtime in Pangu
- A caveat being the use of CBS scores based on old versions of the GM.

Next steps – ML Model Intercomparison

- Follow-up through *AI4NWP* programme
- Run and evaluate latest ML models Fourcastnet, Graphcast
 - Compare results to ML Weather Model being developed by Met Office
- Create leaderboards of current ML models
- Explore further verification metrics (e.g.anomaly correlation) and scenarios (extremes, tropical cyclones)
 - Inform future ML model development
- Use process evaluation and Explainable AI to understand how ML models produce forecasts

Stephen Haddad

Thank you for your attention

Pangu Weather Testing Team & Contributors

Sebastian Cole, Nathan Creaser, Anna- Louise Ellis, Phil Gill, Stephen Haddad, Roger Harbord, Richard Hattersley, Rachel North, Kelly O'Meara, Aurore Porson, Matthew Shin, Chris Steele, David Walters, Martin Willet & more!

Extra slides

Inference workflows: Algorithm

- For each cycle, produce hourly forecasts from T+1 to T+168.
 - Pangu trained for 1-, 3-, 6- and 24-hour forecasts.
 - E.g., for T+10, we'd run a 6-hour forecast, followed by 3-hour and then 1-hour.
 - To obtain the forecasts for the full range of lead times, we need to run the forecasts in dependency orders as an acyclic graph.
 - Application manages the graph with Python's <u>graphlib.TopologicalSorter</u> and <u>multiprocessing.Pool</u>.

(1,)	(24, 24, 1, 1)
(1, 1)	(24, 24, 3)
(3.)	(24, 24, 3, 1)
(3, 1)	(24, 24, 3, 1, 1)
(3, 1, 1)	(24, 24, 5), 1, 1)
(6)	(24, 24, 6)
(6, 1)	(24, 24, 0, 1)
(0, 1)	(24, 24, 6, 1, 1)
(0, 1, 1)	(24, 24, 6, 3)
(6, 3)	(24, 24, 6, 3, 1)
(6, 3, 1)	(24, 24, 6, 3, 1, 1)
(6, 3, 1, 1)	(24, 24, 6, 6)
(6, 6)	(24, 24, 6, 6, 1)
(6, 6, 1)	(24, 24, 6, 6, 1, 1)
(6, 6, 1, 1)	(24, 24, 6, 6, 3)
(6, 6, 3)	(24, 24, 6, 6, 3, 1)
(6, 6, 3, 1)	(24, 24, 6, 6, 3, 1, 1)
(6, 6, 3, 1, 1)	(24, 24, 6, 6, 6)
(6 6 6)	(24, 24, 6, 6, 6, 1)
(6, 6, 6, 1)	(24, 24, 6, 6, 6, 1, 1)
(0, 0, 0, 1)	(24, 24, 6, 6, 6, 7)
(0, 0, 0, 1, 1)	(24, 24, 6, 6, 6, 5)
(0, 0, 0, 3)	(24, 24, 0, 0, 0, 3, 1)
(0, 0, 0, 3, 1)	(24, 24, 0, 0, 0, 3, 1, 1)
(6, 6, 6, 3, 1, 1)	(24, 24, 24)
(24,)	(24, 24, 24, 1)
(24, 1)	(24, 24, 24, 1, 1)
(24, 1, 1)	(24, 24, 24, 3)
(24, 3)	(24, 24, 24, 3, 1)
(24, 3, 1)	(24, 24, 24, 3, 1, 1)
(24, 3, 1, 1)	(24, 24, 24, 6)
(24, 6)	(24, 24, 24, 6, 1)
(24, 6, 1)	(24, 24, 24, 6, 1, 1)
(24, 6, 1, 1)	(24, 24, 24, 6, 3)
(24, 6, 3)	(24, 24, 24, 6, 3, 1)
(24, 6, 3, 1)	(24, 24, 24, 6, 3, 1, 1)
(24, 0, 3, 1)	(24, 24, 24, 6, 6)
(24, 0, 5, 1, 1)	(24, 24, 24, 6, 6, 1)
(24, 0, 0)	(24, 24, 24, 6, 6, 1, 1)
(24, 0, 0, 1)	(24, 24, 24, 6, 6, 1, 1)
(24, 6, 6, 1, 1)	(24, 24, 24, 0, 0, 3)
(24, 6, 6, 3)	(24, 24, 24, 0, 0, 5, 1)
(24, 6, 6, 3, 1)	(24, 24, 24, 6, 6, 5, 1, 1)
(24, 6, 6, 3, 1, 1)	(24, 24, 24, 0, 0, 0)
(24, 6, 6, 6)	(24, 24, 24, 6, 6, 6, 1)
(24, 6, 6, 6, 1)	(24, 24, 24, 6, 6, 6, 1, 1)
(24, 6, 6, 6, 1, 1)	(24, 24, 24, 6, 6, 6, 3)
(24, 6, 6, 6, 3)	(24, 24, 24, 6, 6, 6, 3, 1)
(24, 6, 6, 6, 3, 1)	(24, 24, 24, 6, 6, 6, 3, 1, 1
(24. 6. 6. 6. 3. 1. 1) (24, 24, 24, 24)
(24, 24)	(24, 24, 24, 24, 1)
(27, 27) (24, 24, 1)	(24, 24, 24, 24, 1, 1)
(24, 24, 1)	

3

-3 -1

0

1

-3 -1 0 1

1 3

MF

-3 -1 0

12Z

-3 -1

0

MF

Met Office GM vs GM update on ERA 5 grid Day 2 06Z 12Z 18Z 00Z

120°F

180°F

1809

[∞]Met Office ERA5 Pangu vs GM update 06Z 12Z 18Z Model Run

-3 $^{-1}$ 0 1 3

00Z

12Z

180°E

60°N

Model Run Contraction Contract

12Z

00Z

