

Surface activities in the COSMO Consortium

Jan-Peter Schulz^{1,2} and Jean-Marie Bettems³

¹German Meteorological Service, Offenbach am Main, Germany ²Euro-Mediterranean Center on Climate Change, Caserta, Italy ³MeteoSwiss, Zurich, Switzerland

45st EWGLAM and 30th SRNWP Meeting, 25-28 Sep. 2023, Reykjavik, Iceland

Highlights of the year

- Multi-layer snow model
- Urban model
- Physiographic and urban canopy parameters

Multi-layer snow model

- ➢ Goal: Develop a new efficient and high quality snow model for ICON → SNOWPOLINO
 - First target is NWP in Central Europe
 - But large potential in **data poor regions** (e.g. high mountains regions in Asia)
 - And even larger potential for *climate applications* (no possibility to correct poor parameterization with DA)
- > SNOWPOLINO is implemented in COSMO 6.0
 - Validation shows very good quality of snow pack simulation
 - Used for **snow mask production** at MeteoSwiss

S. Bellaire (MeteoSwiss)

SNOWPOLINO: A limited ,small' version of SNOWPACK

1D heat equation

$$\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}; \quad 0 \Box x \Box L; \quad t \Box 0$$

Water transport

Photos: SLF

Settling / Densification

No Metamorphism!

S. Bellaire (MeteoSwiss)

SNOWPOLINO: A limited ,small' version of SNOWPACK

Comparison of snow height for 300 stations across the Alps using

- a) observations,
- b) Hindcast with the current snow scheme, as potentially used by climate runs,
- c) the MCH operational snow analysis,
- d) Hindcast with the new snow scheme in COSMO 6.0 (no assimilation of snow).

S. Bellaire (MeteoSwiss)

NIX: Status

- Code implemented in ICON in a modular way, i.e. full flexibility for future developments
- A 9-months high resolution test over Switzerland shows
 - tuning of density parameterization and settling needed
 - neutral surface verification scores where snow height is correctly represented
- > Preliminary **global test** shows *stable* algorithm and correct results in snow free regions
- Merge request opened and on-going

(agreement about code in Aug. 2023 session with ICON gatekeepers, only minor issues remaining)

A new urban parameterisation for the ICON atmospheric model

Jan-Peter Schulz, Paola Mercogliano, Massimo Milelli, Angelo Campanale, Marianna Adinolfi, Carmela Apreda, Francesca Bassani, Jean-Marie Bettems, Edoardo Bucchignani, Davide Cinquegrana, Stefan Dinicila, Ron Drori, Rodica Dumitrache, Giusy Fedele, Valeria Garbero, Witold Interewicz, Amalia Iriza-Burca, Adam Jaczewski, Pavel Khain, Yoav Levi, Bogdan Maco, Myriam Montesarchio, Mario Raffa, Alfredo Reder, Hendrik Wouters, Andrzej Wyszogrodzki,

and the COSMO PP CITTA' team

Schulz and Bettems: ET Surface Aspects

COSMO Priority Project CITTA':

City Induced Temperature change Through A'dvanced modelling

Project leader: Project duration: Jan-Peter Schulz (DWD, CMCC) Jul. 2021 – Aug. 2024

Schulz and Bettems: ET Surface Aspects

Task 1: Implementation of TERRA_URB in ICON

Task 1: Implementation of TERRA_URB in ICON

6

2-m temperature difference: urban – rural

Urban Heat Island (UHI) effect in Turin

- Period: 16 20 Aug. 2017
- TU on = ICON+TERRA URB on
- TU off = ICON (reference case)

-1.8

-2.4

-3

2-m temperature difference: TU on – TU off

MIT: A 0.7 0.5 0.4 0.3 0.2 0.1 0

3 2.4 1.8 1.2 0.6 0 -0.6 -1.2

Night

A. Campanale (CMCC)

Fr_paved = Impervious Surface Area (ISA)

0.9 0.8

0.6

ο

6 days experiment: 27/2/2023 - 4/3/2023, 00 UTC + 78h, ATOS@ECMWF

ICON-IL domain (2.5km) driven by IFS

2-m temp. diff.: TU on – TU off

2-m temperature diurnal cycle

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Physiographic and urban canopy parameters

EXTPAR: Pre-processor software for computing several external parameters for ICON(-LAM), i.e.

- •Orography, SSO parameters
- •Albedo, emissivity, aerosols
- •Soil texture
- Land use class fractions
- •etc.

J. Jucker (C2SM)

Operational land use dataset

GlobCover 2009, 23 classes Class 19: Artificial surfaces

Warsaw

A. Wyszogrodzki (IMGW-PIB), A. Jaczewski (IMGW-PIB), C. Apreda (CMCC)

Description of LCZs classes – ECOCLIMAP-SG

Dataset/Producer	Classes*	Descriptions
ECOCLIMAP- SG/CNRM	24. LCZ1: compact high-rise	 Strong built-up NDVI <= 0.2 and high rise buildings (3D roughness 50-100m) Strong built-up NDVI <= 0.2 and very high rise buildings (3D roughness > 100m)
	25. LCZ2: compact midrise	 Continuous urban fabric (from CLC) Strong built-up NDVI <= 0.2 and medium rise buildings (3D roughness 25-50m)
	26. LCZ3: compact low-rise	 Strong built-up NDVI <= 0.2 and low rise buildings (3D roughness <25m)
	27. LCZ4: open high-rise	n.a Despite the class is included in the legend of ECOCLIMAP-SG, the data are not available in the European map. Technical documentation doesn't provide further details.
	28. LCZ5: open midrise	• Medium built-up 0.2 < NDVI <= 0.3 (o 6)
	29. LCZ6: open low-rise	• Light built-up 0.3 < NDVI <= 0.4
	30. LCZ7: lightweight low-rise	n.a Despite the class is included in the legend of ECOCLIMAP-SG, the data are not available in the European map. Technical documentation doesn't provide further details.
	31. LCZ8: large low-rise	 Industrial or commercial unit, Airports (from CLC) Built-up with highly reflecting roof (associated to productive and commercial use) Roads
	32. LCZ9: sparsely built	 Road and rail networks and associated land, Mineral extraction sites, Dump sites, Construction sites, Green Urban Areas, Sport and leisure facilities (from CLC) Very light built-up NDVI > 0.4
	33. LCZ10: heavy industry	• Port areas (from CLC)

Apreda, C., J.-P. Schulz, A. Reder, P. Mercogliano, 2023: Survey of land cover datasets for updating the imperviousness field in urban parameterisation scheme TERRA_URB for climate and weather applications. *Urban Climate*, 49, 101535

*Stewart I.D., T.R. Oke, 2012: Local Climate Zones for Urban Temperature Studies. Bull Am Meteorol Soc., 93(12):1879-1900. doi:10.1175/BAMS-D-11-00019.1

Operational land use dataset

GlobCover 2009, 23 classes **Class 19: Artificial surfaces**

New land use dataset

ECOCLIMAP-SG, 33 classes 10 LCZ urban classes

ter C3 crops perate grassland permanent snow bare rock bare land ivers akes sea and oceans

Warsaw

A. Wyszogrodzki (IMGW-PIB), A. Jaczewski (IMGW-PIB), C. Apreda (CMCC)

EXTPAR: Different datasets of urban fraction for Changes of urban areas in time

A. Wyszogrodzki (IMGW-PIB), A. Jaczewski (IMGW-PIB), C. Apreda (CMCC)

URBAN AERA FRACTION

Conclusions

- The operationalization of the new multi-layer snow model NIX in ICON is ongoing.
- \succ TERRA URB is now fully implemented and tested in ICON. It is available in the gitlab icon-nwp master. It is already operational at IMS since July 2023.
- The global land use dataset ECOCLIMAP-SG was made available in NetCDF. Preliminary look-up tables were developed. ECOCLIMAP-SG was implemented in the pre-processor EXTPAR, in github. A few adaptations for ICON will come soon.
- Experiments with TERRA_URB in ICON-LAM are on-going in several groups \succ of the project. First results look very promising. Characteristic features of urban surfaces in atmospheric models, for instance the Urban Heat and Dry Island effects, are already represented.

