2 HPC, 2 implementations In operations since February 2021 No upgrade during the 4 year contract Belenos computer Taranis computer Taranis computer Taranis computer 2292 computing nodes 10.39 PFlops peak performance Termis computer Taranis computer Taran

Regional operational NWP systems based on AROME operational suite: cy46t1 op1 **EPS (PE-Arome)** 3DVar 16 perturbed members + control 3DVar with 1h cycle 4 forecasts per day (+ 51h) 8 forecasts per day Initial perturbations from Arome-EDA **EDA** (**AE-Arome**) LBCs from Arpege-EPS 3.25 km, 100 s timestep random surface perturbations 3DVar with 3h cycle 25 members **Arome-IFS Nowcasting (Arome-PI)** downscaling of IFS 3DVar, guess from Arome surface 3dvarfr, 10' cut-off 4 forecasts per day 24 forecasts per day up to 6h **Common features** (except otherwise noted) 1.3 km, 50 s timestep 90 levels (5m to 10 hPa) 51 h forecast lead time **Arome-Overseas (Arome-OM)** 5 domains, use of mixed precision 4 forecasts per day (+78h on demand) Downscaling of IFS with prior "warmup" Use of Arpege surface (continent) 1D ocean model **EPS Arome-Overseas (PE-Arome-OM)** 15+1 members at 2.5 km, mixed precision, hydrostatic, SPPT 5 domains, 2 runs per day (+78h on demand) Use of IFS as unperturbed initial conditions Boundary conditions + initial perturbations : Arpege EPS Perturbation of surface + ocean layers Brousseau et al 2016, Improvement of the forecast of convective activity from the AROME-France system. Q.J.R. Meteorol. Soc., 142: 2231-2243 • L. Raynaud et F. Bouttier, 2016: Comparison of initial perturbation methods for ensemble prediction at convective scale, Q. J. R. Meteorol. Soc. • Bouttier et al. 2016 Sensitivity of the AROME ensemble to initial and surface perturbations during HyMeX. Q. J. R. Meteorol. Soc.

Overview of Météo-France NWP systems

Global operational NWP systems based on ARPEGE

operational suite: cy46t1 op1

4DVar

EPS (PEARP)

EDA + SV

4 forecasts per day

deep convection schemes

- 4DVar with 6h cycle: Tl224 c1 & Tl499 c1
- Use of EDA background covariances (12h average)
- 4 forecasts per day

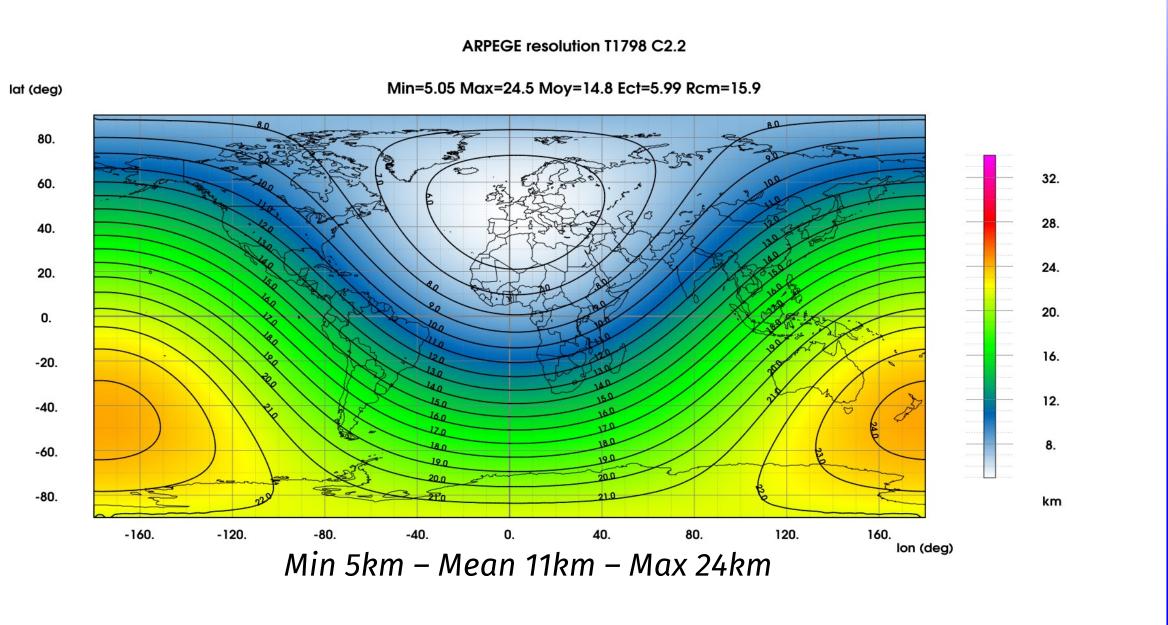
34 perturbed members + control

Initial perturbations from Arpege-

random pertubed parameters + 2

 New: Tiedtke deep convection scheme, 1d sea-ice model, SRTM, All-sky assimilation of microwave data from MHS and ATMS

Common features


(except otherwise noted)

TI1708 c2 2 (5 to 24 km

- Tl1798 c2.2 (5 to 24 km)
- 240 s timestep
- 105 levels (10 m to 0.1 hPa)
- 102 h forecast lead time

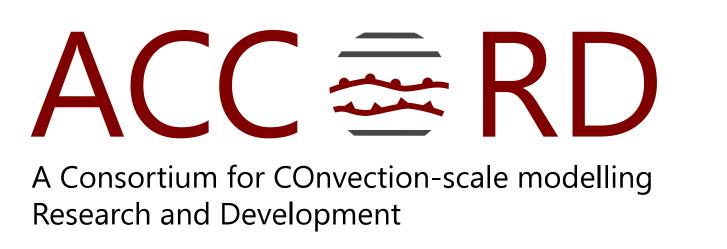
EDA (AEARP)

- ∘ Tl499 c1
- 4DVar with 6h cycle (Tl224 c1)
- 50 members

Descamps et al 2015, PEARP, the Météo-France short-range ensemble prediction system. Q.J.R. Meteorol. Soc, 141: 1671-1685
 Bouyssel et al, 2022, The 2020 Global Operational NWP Data Assimilation System at Météo-France, Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol. IV)

Further perspectives (2024)

• 2 domains for Arome applications @500 m in near real time (2023) then in operations (2024)


Next e-suite: cy48t1 op1:

- OOPS in 3DVar and 4DVar analyses
- Assimilation: 3DEnVAR Arome, hybrid B matrix in Arpege 4Dvar
- Arome EDA: 50 members (instead of 25 currently)
- Physics: EcRad (Arome), use of SST from Mercator-Océan global model and enhancement of Tiedtke deep convection scheme (both for Arpege), change of aerosol and ozone climatologies (from CAMS, Arome)
- Dynamics : use of WENO interpolations for T and Q in stratosphere (Arpege)
- Observations: "all sky" assimilation of microwave obs, Arpege: GOES-17, CrIS mode «FSR», GNSS-RO (GRACE-C, Sentinel-6, Spire), scatterometers HY-2B & HY-2C(Arome), AMV HIMAWARI/AHI, Mode-S from EMADDC (Arome), WIGOS adaptations
- PEARP: revision of singular vectors and of the range of perturbed parameters
- Arome forecasts will be run using single precision

Calendar: switch to operations by S1 2024

Faure et al, 2020: Operational Implementation of the AROME Model in the Tropics, Weather and Forecasting, 35(2), 691-710

Merlet et al, 2017: Arome for nowcasting, Aladin-Hirlam Newsletter n°9

