

A 3DEnVar data assimilation scheme for Arome-France using OOPS in Météo-France current double E-suite

Valérie Vogt and Pierre Brousseau, Etienne Arbogast, Loïk Berre, and colleagues ... (Météo-France)

EWGLAM/SRNWP meeting, September 2023

Plan

- Reminder on the B matrix in 3DEnVar using OOPS
- Tuning of the 3DEnVar scheme and evaluation
- Current Arome E-suite
- Conclusions and perspectives

3DEnVar : flow-dependent specification of the B matrix

Need for an ensemble of forecasts => provided by an EDA:

Flow dependent perturbations are deduced from this ensemble :

$$\epsilon_l^b = rac{1}{\sqrt{N_e - 1}} (\widetilde{\mathbf{x}}_l^b - \langle \widetilde{\mathbf{x}}^b \rangle) \qquad \mathbf{X}^b = \left[\epsilon_1^b, \dots, \epsilon_{N_e}^b \right]$$

 Background error covariances are directly sampled from the perturbations of the forecasts, with a localization step (C)

$$\mathbf{B} = \mathbf{C} \circ \mathbf{X}^{\mathbf{b}} \mathbf{X}^{\mathbf{b}T}$$

Illustration of flow-dependent covariances in AROME-France

Increment of different intensity and geographical structure related to the weather situation

Illustration of flow-dependent covariances in AROME-France

Increment of different intensity and geographical structure related to the weather situation

- => Background error covariances computation can be extended to new variables (hydrometeors, NH variables, surface, ocean)
- => A 4DEnVar scheme, without TL/AD models, can be considered

Implementation of 3DVar and 3DEnVar in OOPS

- Decision made several years ago at Météo-France to develop 3DEnVar within the OOPS framework
- First step: switch to a OOPS system without any scientific modification
 Validation of a AROME experiment including a <u>3DVar assimilation cycle using OOPS</u> against the operational suite

Implementation of 3DVar and 3DEnVar in OOPS

- Second step : Activation of the 3DEnVar
 - Previous experiment has been the reference to evaluate the impact of a 3DEnVar scheme in a pre-operational configuration
- All individual contributions to the current e-suite have been evaluated against the OOPS 3DVar reference

Plan

- Reminder on the B matrix in 3DEnVar using OOPS
- Tuning of the 3DEnVar scheme and evaluation
- Current Arome E-suite
- Conclusions and perspectives

In search of an optimal 3DEnVar configuration: Localization length scale

1 month period : 16/09/2020-15/10/2020

Relative difference (%) of RMS of background departures for aircraft winds for several localization length scales (ref = 3DVar)

In search of an optimal 3DEnVar configuration : Other sensitivity experiments

Parameter	Impact on the DA system	Impact on previous diagnostics
Increased ensemble size (25=>50 members)	Reduction of the sampling noise	positive
Vertical Loc = 0,2hPa	« Thinner » filtering of the background error vertical correlations	neutral
Vertical Loc = 0,4hPa	« Broader » filtering of the background error vertical correlations	slightly negative
Inflation = 0,8	Smaller sigmab => the analysis fits less the observations	neutral/slighly positive
Inflation = 1,2	Higher sigmab => the analysis fits more the observations	slightly negative
Hybridization = 0,8 ens/0,2 clim	Reduction of the flow dependency and of the sampling noise	negative
Pæ Incremental analysis update	Filtering of the higher spin- up due to the 3denvar	neutral/slighly positive

AROME 3DEnVar at Météo-France : Selected configuration

- Same resolution as operational configuration :
 - 1,3km, 90 vertical levels
- Ensemble of Data Assimilations (EDA) Arome :
 - 50 members, 3,25km, 90 vertical levels, 3-hourly cycling
- Horizontal localization length scale :
 - varying between 25 km at low levels and 150 km near the model top
- Vertical localization : 0.3log[hPa]
- Pure 3DEnVar (no hybridization)
 - => experiment carried out on more than 1 year, including numerous storms
 - => no numerical problems reported until the heatwaves of summer 2022 (4 numerical explosions)
- Increment Analysis Update (IAU)
 - => to cope with these instabilities

Pre-operational AROME 3DEnVar at Météo-France : Impact results over 6 months

% of reduction of RMSE for different parameters over 6 months (16/09/2020-01/03/2021) (ref = IFS analysis, radiosondes, surface stations)

Pre-operational AROME 3DEnVar at Météo-France with OOPS: impact on precipitations

Simulation of HPE (8 cases)

Example of September 2020, 19th 90th percentile of the 16 hourly forecasts covering the event period (lagged-ensemble)

Plan

- Reminder on the B matrix in 3DEnVar using OOPS
- Tuning of the 3DEnVar scheme and evaluation
- Current Arome E-suite
- Conclusions and perspectives

Arome-France double E-suite

Assimilation

- 3D Ensemble variational scheme « 3DEnVar », replacing 3DVAR
- First step toward direct assimilation of microwave radiances in « all-sky » conditions as in ARPEGE E-suite, currently limited in Arome from clear sky scenes to weakly scattering scenes while hydrometeors are not in the control variable. (Philippe Chambon, Mary Borderies)
- Assimilation of wind and temperature data derived from Mode-S (+900.000 wind,+500.000 temp. observations per day) data acquired from EMADDC (Vivien Pourret)
- Assimilation of wind scatterometer HY-2B and HY-2C (Christophe Payan)
- Surface and physics
 - SST from Mercator (Adrien Napoly)
 - Radiation : switch to EcRad (Yann Seity)
 - Include the effect of solar eclipses on radiation (Jean-Marcel Piriou)
 - Some improvements in the turbulence scheme (Yann Seity)

Pre-operational AROME-France: Impact results (1/2)

% of reduction of RMSE for different parameters over 3 months (30/07/2022-01/11/2022) (ref = IFS analysis, radiosondes, surface stations)

Pre-operational AROME-France: Impact results (2/2)

% of reduction of RMSE for different parameters over 2 months (01/12/2022-01/02/2023) (ref = IFS analysis, radiosondes, surface stations)

Conclusions and perspectives

- Arome 3DEnVar is part of the real time double E-suite which has started this summer
- The move to the OOPS framework and a pure EnVar DA scheme allows the implementation of new assimilation algorithms :
 - Hydrometeors in the control variable and direct assimilation of radar reflectivities
 - 4DEnVar and the assimilation of observations at a 15-minute frequency
 - Scale Dependant Localization
 - Extension of the control variable (NH variables, coupled assimilation ocean/atmosphere,...)

Thank you for your attention!

