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Abstract

A Semi-Lagrangian Inherently Conserving and Efficient (SLICE) scheme is described for transport of
passive scalars in Cartesian geometry. It is based on a Control-Volume (CV) approach and uses multiple
sweeps of a 1D O (A.'L'4) conservative remapping algorithm along pre-determined cascade directions. The
scheme has been applied to standard 2D tests from the literature. Overall, it is found that in addition to
exactly conserving mass, it is also competitive with standard non-conserving semi-Lagrangian schemes

from the viewpoints of both computational efficiency and accuracy.

1 Introduction

Semi-Lagrangian (SL) advection schemes have become very popular (Temperton, Hortal & Simmons 2001)
for meteorological /atmospheric modelling because of the substantial savings that can accrue from lengthening
the stability-limited timesteps of traditional Eulerian schemes. For a review of SL schemes and related issues,
see Staniforth & Caété (1991). Unlike the Eulerian flux-form approach, a common problem with SL schemes
is the lack of conservation of quantities, such as mass, due to interpolation. Although exact conservation may
not be crucial for some applications, e.g. Numerical Weather Prediction (NWP) where the integration period
is relatively short, it can be of paramount importance for long simulations, e.g. those of climate studies.
Even though it is not essential for NWP, if exact conservation can be achieved without major computational
overhead, it is nevertheless desirable.

Various authors have tackled this issue and a number of conserving SI. schemes have appeared in the
literature. Such schemes may be grouped in two categories: (i) corrective, and (ii) inherently-conservative
schemes. Algorithms in the first group, e.g. the quasi-conservative algorithm of Priestley (1993), are a
posteriori corrections to restore the desired quantity whilst minimising changes to the original solution.

Attention herein is focussed on the second group.
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Most inherently-conservative semi-Lagrangian schemes are either relatively computationally expensive
with respect to the improvement expected, or not easy to generalise efficiently for 3D global circulation
models. The most elegant schemes are for 1D problems (e.g. Laprise & Plante (1995), Rancic (1995)).
However, a computationally efficient extension of these mappings to higher dimensions is not an easy task due
to the distorted (when viewed in real space) Lagrangian grid. Rancic (1992), hereinafter referred to as R92,
presented a natural extension to 2D of a 1D mapping. It employs a bi-parabolic piecewise representation and
the gridbox-averaged field is computed by exactly integrating the piecewise representation over a Lagrangian
control volume (CV). This entails considerable geometric complexity due to the distorted nature of the
Lagrangian CV, an irregular quadrilateral when represented in real space, making the scheme both complex
and expensive, and particularly so in 3D. Scroggs & Semazzi (1995) presented a somewhat simpler piecewise-
constant version of R92, but with the consequence of being highly damping. To overcome the complexities
of R92, Laprise & Plante (1995) advocated tracing back the centre of the Eulerian CV edges, rather than the
corners as in R92, and the resulting Lagrangian CV’s are then rectangles in real space by construction. This,
however, is not a very robust approach as Lagrangian CV’s may overlap and exact conservation is then lost.
In a series of papers (Machenhauer & Olk (1996), Machenhauer & Olk (1997), Nair & Machenhauer (2002),
Nair, Scroggs & Semazzi (2002)), Machenhauer, Nair and collaborators tried to simplify the remapping by
approximating the irregular Lagrangian CV by a series of regular sub-CV’s. Although this is a reasonable
approximation, as long as the Lagrangian grid is relatively smooth, the complexity of the underlying sub-CV
topology for general flows leads to algorithmic complexity. Unlike the above CV-based methods which are
both locally and globally conserving, Leslie & Purser (1995) developed a simpler, grid-based, scheme which is
globally conserving. The scheme exploits some of the features of cascade interpolation developed previously
by the same authors (Purser & Leslie 1991) and the use of cumulative mass and density fields which are
staggered with respect to each other. The cumulative mass function is computed by integrating the density
distribution, whilst density is recovered by differentiating the mass function. By virtue of differentiation
over contiguous zones, global mass is conserved as in flux-form discretisations. However, as noted in Purser
(1998), the scheme does not adequately handle singularities such as polar points in a latitude-longitude grid,
and this limitation has hindered its application to global models.

Here an efficient 2D inherently-conservative semi-Lagrangian scheme, that exploits some of the best
features of the above-mentioned algorithms, is developed and tested. The 2D version of the scheme (SLICE-
2D) combines the accuracy of the 1D O (Aa:4) conservative remapping algorithm (SLICE-1D) with the
computational efficiency of solving higher-dimension problems by multiple sweeps of the SLICE-1D algorithm
along predefined Eulerian-Lagrangian cascade directions. At each sweep this means that only CV’s of
constant width (on the appropriate mesh) arise, thereby allowing the inherent efficiency of the 1D algorithm
to be fully exploited. The first stage is performed in the regular Eulerian (Cartesian) frame, while the second
is entirely computed in the (regular) Lagrangian frame. This is similar to the algorithm of Nair et al. (2002),
but without the complexity of explicitly computing the area (or volume) of complex Lagrangian CV’s in
physical space.

The rest of the paper is organised as follows: Section 2 illustrates the details of the SLICE-1D scheme,



while SLICE-2D is detailed in Section 3. Results of several tests from the literature are given in Section 4,

and conclusions are summarised in Section 5.

2 The SLICE-1D scheme

Consider passive 1D advective transport of a scalar quantity p governed, in the absence of sources and sinks,
by
dp 0

ot + 8—I(up) =0, (2.1)

where p(z,1) is the density (amount of scalar per unit length) of the transported quantity, and u(z,t) is the
transporting velocity field.
Integrating (2.1) with respect to x between two arbitrary moving boundaries 1 = #1(2,t) and z2 =
z2(x,t), and making use of Leibniz’ rule, leads to (Laprise & Plante 1995)
d e o — [p(azg,t) % o(ent) %
+p(za,t)u(z,t) —p(z1,t) u(z1,8)] = 0. (2.2)

dt zq(z,t)

If the boundaries z1 and x4 are moving with the fluid, i.e. if

d d
—r=ulent) , =), (2:3)

then (2.2) simplifies to the classical integral form of the tracer conservation equation
, oa(t
W = % (/ZI(:))p(x,t) dx) 0. (2.4)
Eq. (2.4) simply states that the mass M (1, z2,t) contained between any two boundaries 21 (¢) and z3 (¢),
moving with the fluid, is invariant in time, i.e. M is conserved.

Since z; (t) and z3 (¢) in (2.4) are any two points travelling with the fluid, one can consider (see Fig.
1) that these moving boundaries instantaneously coincide at time #”*! with the boundaries of an Eulerian
CV (ECV), whilst their upstream positions 1 (£*) and x5 (t") at time t” form the left and right boundaries
of the associated upstream Lagrangian CV (LCV). In other words, the fluid contained in the Lagrangian
segment [2f, 24| = [z1 (t"), 2 (t")] is transported to the Eulerian segment [z1 (t"+'), 2, (t"*!)], and this
provides the basis of the SLICE-1D scheme.

To discretise (2.4), consider the general case where the computational 1D domain Q = [Zmin, Zmaz] 18
subdivided into N ECV’s with unequal spacing Az; = ;4172 — 2i—1/2 (i = 1,2,..,N), where z;_;/, and
z;41/2 are respectively the left and right boundaries of EC'V;. Tt is also convenient to define N associated
grid points z; at the centres of ECV’s, i.e. z; = (mi+]/2 + l‘i_]/z) /2, where the gridbox-averaged densities

are placed. Defining the gridbox-averaged density at time ¢ as

(t) 1 /.1,‘1+1/2 ( t) 1 ( t) MZ (2 5)
0; = p(x,t)de = M(x;_ xz; = .
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the time-discretisation of (2.4) can then be rewritten in a semi-Lagrangian fashion as
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Figure 1: Schematic for SLICE-1D. Given a gridboz-averaged density distribution p(z;,1") and the depar-

ture points x;'iil/z of an ECV; at time t"t1 with boundaries at x = Tit1)2, then ﬁ(.ri,t”"'l) is computed
from the transported mass (MZ-)n-l_1 = (Mid)n, where (Mid)n is the mass contained within the segment

d d : n
T € Ti_172 Tit1)2 at time t".

where B}
Tit1/2
M= / p(z,t)dz, (2.7
d

xz—1/2

superscript n denotes evaluation at time #™, superscript d denotes association with a departure-point value,

and z¢

i+1/2 are respectively the left- and right- hand boundaries of LC'V; at time ¢™.

and .Z‘;-i_l /2

In general the shape of p (z,1") is not known a priori and therefore a piecewise representation that uses
the given discrete gridbox-averaged values is usually adopted. This can be either the Piecewise Constant
Method (PCoM), Piecewise Linear Method (PLM) (van Leer 1977), Piecewise Parabolic Method (PPM)
(Colella & Woodward (1984), Laprise & Plante (1995)) or the Piecewise Cubic Method (PCM) introduced
herein. Since PCoM, PLM and PPM are all special (lower-order) cases of PCM, only PCM is described

herein.

2.1 The Piecewise Cubic Method (PCM)

(a) Definition of the cubic

In a similar manner to the PPM, one can construct a density profile over the whole domain using a series
of local cubics. For any FCYV;, defined over the segment [%’—1/27 :ci+1/2], a cubic polynomial for density

distribution at time ¢” can be uniquely defined (see solid curve of Fig. 2) as

pi (€)= al” +alVe+aPe? +ale® | e elo,1], (2.8)
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Figure 2: Schematic for PCM. p; (z) (solid curve} is the piecewise-cubic representation of p (z) for ECV;, and
Pix1)2 (z) (dashed curves) are local cubics used to compute the associated parameters pl, pf* and §p;. The

separation between curves is exaggerated for clarity and they consequently do not exactly satisfy (2.14)-(2.16).
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where ¢ = (.13 - l‘i_1/2) /Az; is a dimensionless local variable, and (az(- ,a; ', a

defined such that

3 .
,al(- )) are coefficients

pi(0) = ok, (2.9)
pi (1) = pf, (2.10)
1
/0 p(€)dE = 7, (2.11)
dp;
— = Jp;. 2.12
B o) p (2.12)

Here pF and p!t are respectively local estimates of p at the left- and right- hand edges of ECV;, and dp; is
a scaled slope Az; (dp/dz)|,. of the density-distribution at its centre (see Section 2b for details of how this
is done).

The solution to (2.9)-(2.12) yields

az('O) = sza

W = _6pL +6p; — 20p;

al pi + 6P — 20pi, (2.13)
a® = 9pF 37 67, + 63ps, |

(b) Computation of the cubic parameters pl, pF and dp;

The density values at the edges of ECV;, namely pl and pft, can be computed in a similar way to the PPM
(Colella & Woodward 1984). This approach, of computing the edge values by differentiating a locally-defined
quartic cumulative mass function, is formally equivalent to evaluating a cubic density function p;_y,, (2) at
Ti_1/2, 1.€.

piL = @—1/2 (ﬂfi—1/2) ) (2-14)



where (leftmost dashed curve of Fig. 2) the cubic density function p;_y5 () is centred about the point
z;_1)2- It is constructed to have specified masses Ax;_2p; 5, Azi_1p;_1, Az;p; and Az;y1p;;, in the four

immediately surrounding ECV’s, i.e. to satisfy the four conditions

f::://; picija(2)de = Azip1Piy,
Tit1/2 _ 5.
f-”;‘z—l/z pZ—1/2 (I) dl’ - Azlpz’ (215)
lel__al//; Pi-1/2 (‘E) de = Ami_lpi—l’
L picap (@) de = Awi_op;_s.
To ensure continuity of p(z) across CV boundaries, pff is similarly obtained (see Fig. 2) from
Pf = PZL+1 = /’5i+1/2 (l’z’+1/2) ) (2.16)

where pj11/2 (¢) satisfies (2.15) but with the index shift i — 74 1.
The slope (dp/dz)]|,. at the centre of EC'V; is computed as the average of the two slopes [dpi—1/2 (z) /dz]

Ty

and [dp;t1/2 (2) /dz] |z . Thus the required scaled slope dp; is

Azx;
2

dpi—1/2 ()

N dpiy1/2 (%)
dz

dp; =
Pi dz

] : (2.17)

Ty
Computing the slopes in this way has the property that if p(z) happens to be a globally-defined cubic
then p; (2) coincides exactly with p(z) over the interval [331'—1/2, :132-+1/2:| and there is no error. This would

not, for example, be the case if (dp/da:)|xi were to be instead computed as the average of the two slopes

[dpi—1j2 () /de]|, _ ~and [dpiy1jz (v) /da]

i—1/2 Wz+1/2.

(¢) Computation of piecewise integrals

Having defined the cubics p; (z) for each ECV;, the mass (Mid)n contained in LCV;, which extends over

the segment [xf_l/m $?+1/2] at time t", is computed as

d
n Tit1/2 n
(MH)" = , p(z,t")de
Ti_1/2
1 n m— —n E? 1/2 n
Az fE?_l,z P (&) dE + Zj:ulrl Az;p] + Az fo'F Ppn (&) de, m>1+1, (2.18)
Ehase g .
Az fgﬂ_i://z P (E) dg, m=1.

Here [ and m > [ are the FC'V indices associated with the segments in which 1"?—1/2 and Jf?_l_l/g lie, i.e.
;13;.1_1/2 € [;131_1/2, ;‘EH_l/Z] and x;'i+1/2 € [mm_1/2, mm+1/2]. Also 5&1/2 are the local coordinates corresponding

to a:;.i:tl/Z, i.e. E;’i—l/z = (:cf_l/g - :131_1/2) /Az; and £f+1/2 = (x;'i+1/2 - mm_1/2) /Az,,. The integrals on
the r.h.s. of (2.18) are evaluated analytically.

3 The SLICE-2D scheme

The nomenclature of Nair, Coté & Staniforth (1999b) is adopted herein whereby the arrival points at time

t"*1 collectively define an Eulerian (z,y) mesh which subdivides the entire computational domain into a



finite number of contiguous and non-overlapping regular 2D ECV’s, and similarly, the departure points at
time t” collectively define a Lagrangian (X, Y') mesh which subdivides the same domain into an equal number
of contiguous and non-overlapping irregular 2D LCV’s.

Consider a 2D domain Q = [Zpin, Zmas) X [Ymins Ymas)] subdivided into N, x N, ECV’s with centres
(#i,9;), i = 1,.., Ny, j = 1,..., Ny, and whose boundaries are the straight lines that join the four corner
points (miil/z,yjil/z), t=1,..,N;, j = 1,...;, Ny. The curvilinear Lagrangian coordinate system, which
corresponds to the transformed Eulerian (z,y) system by the action of the velocity field over the time
interval [t”,t”"'l], is denoted by (X,Y). A y;-line of the Eulerian grid is the horizontal line defined by
the set of points {(ZL‘i_]/Q, yj) ,i=1,., Ny + 1} and the Lagrangian Y; is the curve defined by the set of
points {(52',]'—1/27 ’y'm,_lm) , J=1,., Ny + 1}. These latter points are the centre points of the bottom edges
of LC'V; ; along the Lagrangian X;_;/,, i.c. (5i’j_1/2,gi7j_1/2) = [(xf_l/wyj_l/z) + (xg+1/2vy?—1/2)} /2,
where (a:d, yd) denotes the departure point of (z,y). See details in Fig. 3.

The conservative scheme in 2D is a combination of the cascade approach and the SLICE-1D algorithm.
It comprises a multiple sweep of SLICE-1D along one of the two Eulerian (Cartesian) directions followed
by a similar multiple sweep along one of the two Lagrangian ones. Without a priori knowledge of the
flow, there are no arguments for or against a particular choice of order in which directional sweeps are
performed in Cartesian geometry, but for atmospheric flows in spherical geometry there can be (Nair, Coté
& Staniforth 1999a). To facilitate possible generalisation of the present work to spherical geometry, the
Nair et al. (1999b) choice of a first cascade along Eulerian 2 (holding y constant), followed by one along
the Lagrangian Y (holding X constant), has been adopted. Cascading first along Eulerian y, then along
Lagrangian X is however an equally valid choice for Cartesian geometry.

Consistent with the adopted CV approach, the problem considered here is the evaluation of the time
evolution of the density averaged over an Eulerian gridbox, i.e. given p (z, y,t"), compute p (a:, Y, t”+1). This
is distinct from the alternative gridpoint approach of evaluating the time evolution of the local, pointwise-
defined, density p(z,y,t). To achieve conservation, which is the cornerstone of the present scheme, the
scheme advectively transports the quantity to be conserved (mass in this case), then computes the gridbox-
averaged density at the new time step from the mass that arrives at the ECV at time ¢"t1. This is equivalent
to simply computing the elementary masses of LCV’s, then translating them to their corresponding ECV’s.

The first stage of the scheme is the computation of masses M E; ; contained in EC'V; ;, associated with
Eulerian grid-points (z;, y;), then redistribution of them in a conservative way among I EC'V; ; (Intersection
Eulerian Control Volumes) using the SLICE-1D algorithm described in the previous section. (IECV’s
are intermediate CV’s associated with surrounding intersection points and aligned along the first cascade
direction z, see Fig. 3.) The second stage is to transfer the masses at TECV;; to ILCV;; (Intersection
Lagrangian Control Volumes) and to then redistribute them conservatively to LC'V; ; using the same SLICE-
1D algorithm, again see Fig. 3. (ILC'V’s are also intermediate CV’s associated with surrounding intersection

points but aligned along the second cascade direction Y.)
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Figure 3: Superposition of Eulerian (x,y) and Lagrangian (X,Y) coordinate systems and their associated

grid-points and control-volumes.

3.1 First stage

(a) computation of intersection points

As in Najr et al. (1999b), the Lagrangian grid (X}, Y;) is the linkage of Lagrangian points by straight lines
in Eulerian space. Thus Y; is linear (in # — y coordinates) in the region of an intersection. The intersection
points (:132_1/%., yj) between Y;_;/, and y; are computed using linear interpolation as in Nair et al. (19990b),

and similarly for the intersection points (azg-’j, yj).
(b) Transfer of mass to intersection control volumes (IECV)

For simplicity and clarity, we denote by EC'V; ; the Eulerian Control Volume surrounding the Eulerian
grid-point (z;,y;) whose area is FA; ; = (mi+1/2 — l‘i_l/g) X (yj+1/2 - yj_1/2), whereas IECYV; ; denotes
the CV associated with the intersection point (m;’j,yj) whose area is TEA; ; = (332.4_1/27]. - m§_1/27j) X
(yj+1/2 - yj_1/2) (see Fig. 4). Since ECV;; and IECYV; ; share the same houndaries in the y-direction,
TECYV; ; has an inherently Eulerian flavour and therefore the name of Intersection-Eulerian CV seems ap-
propriate. Tt is worth noting that for each column ¥; two intersection points are computed: (i) (“3;'—1/2,1'7 yj)
which is the intersection between Y;_1/5 and y; and this gives directly the left boundary of TECV; ;, and (ii)
(x;-’j, yj) which is the intersection between Y; and y; and this gives directly the centre of mass for IEC'V; ;.
Note also that the centre of mass for IECYV; ; is not necessarily the geometric centre of IECYV; ;.

The first stage of the scheme is to redistribute conservatively the given masses from ECV; ; to IECV, ;.
This is done using SLICE-1D. To illustrate this process, let us consider a single y;-strip of Fig. 3, shown in

more detail in Fig. 4.



Given the masses

ME}; = p; Az Ay, (3.19)

of each EC'V; ;, an underlying cubic pseudo-density (or mass per unit length along the first cascade direction

z) distribution for each ECYV; ; can be defined as

pii () = al) +ale+all)e? +all)e® | e eo). (3.20)
In (3.20), az(-?j), az(-’lj), az(-?j) and az(-?j) are defined (cf (2.9) - (2.12)) such that

pij (0) = pi;, (3.21)
pi (1) = piy, (3.22)
' posde = ML 3.23
/Opz',jf— Az, (3.23)

dpij
, — ipij, (3.24)
dE £=1/2 ! ‘

where, for fixed j, p{“’j, pfj and dp; ; are computed using (2.14), (2.16) and (2.17), respectively. The mass

MTI; associated with each TEC'V; ; is then computed in a piecewise manner, using (2.18), as

m— n E: 1/2,5
Awifo o (6)dE+ SR04 MEL; + A [o™ prj (€) dE, m > 141,

e (3.25)
Az, fE;l://z JJ Pl (&) d€, m =1,

My, =

where (I, m > 1) are the EC'V indices within which the boundaries of TECYV; ; (1‘ ) lie, and

! I3
i-1/2,5> Yi+1/2,j
51{5:1/2,3' are the points in local coordinates that correspond to 1’2’5:1/2,1" Noting that I (i) = m(i — 1), and
that by construction

Tit1/2
/ pijde = MET;, (3.26)

i—1/2

it follows from (3.25) (with appropriate boundary conditions) that

Ny Ny
YoMz =3 ME};. (3.27)
i=1 i=1

Here and throughout, it is assumed that all sets of C'V’s are contiguous and non-overlapping due to non-
intersecting trajectories, i.e. the timestep At is chosen to satisfy the Lipschitz criterion (Smolarkiewicz &
Pudykiewicz 1992) which also should ensure single valuedness of intersections (Ig—l/z,j’ yj) and (mg’j, yj) of

the Lagrangian and Eulerian grids (Purser & Leslie 1991).

3.2 Second stage

The second stage consists of redistributing the masses MI]'; amongst the LC'V; ; in a conservative way.
Consider the curved Lagrangian strip around Y; in Fig. 3, and shown in isolation in Fig. 5. Although in
physical space (z,y) the ILCV; ;’s and LCV;j ;’s are complex distorted areas, they are nevertheless regular
in the Lagrangian space (X,Y), as illustrated in Fig. 6.
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Figure 4: First stage of SLICE-2D. The masses in ECYV;; are redistributed in a conservative manner to
IECV ;.
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Figure 6: Second stage of SLICE-2D. The masses in ILCV; ; are redistributed in a conservative manner to

LCV; ;. ILCV;; and LCV; ; are depicted here in Lagrangian space (X,Y).

First the masses associated with the ILCV’s need to be evaluated. This is done by making the ap-
proximation that each ILCV actually has the same mass as its corresponding TEC'V. This is a reasonable
approximation provided that the velocity field is smooth enough to give a sufficiently smooth distorted La-
grangian mesh. It is consistent with the assumption that the cascade approach is only accurate provided
the velocity field has a sufficient degree of smoothness (Purser & Leslie 1991). The second stage of the
remapping consists of one-dimensional integrations over LC'V; ;’s of local cubic pseudo-density functions
p(s) (mass per unit length along the curved distance s of the Lagrangian Y;). Similarly as the first stage,
the p(s) are defined such that their integrals over ILC'V; ;’s have the associated masses M I, computed at
the first stage. This requires specification of how ILCV; ;’s and LCV; ;’s overlap.

Recall that the Y; curve is the set of elementary segments s; ;_1/2 (j = 1,.., Ny + 1), linking the left
boundaries {(%Z’J_l/g, gm_m) yJ=1,., Ny + 1} of LCV;;’s, j = 1,.., Ny. From this the cumulative dis-

tance along Y; from an arbitrary origin (%i,l/% ’yvi’l/z) to each point ('J}'m_l/g, ft]i,j_l/z) is computed as

0,

Si,1/2

~ ~ 2 ~ ~ 2 .
Sijri/2 = Sij-12+ \/(Ii,j+1/2 —Fijo1yp) + Gigrre —Uigoiya) s i =1, Ny (3.28)

Similarly 5;',3' are the distances to the intersection points of ¥; with y;, computed as

Sij = sik-1/2F \/(1'2',3' — Fike1/2) + (95— Boko12) s (3.29)

where k is the CV index on the Y; curve such that the intersection point (mgﬁj, y; > yz-,k_m) belongs to
the straight line that joins the two CV boundaries (552-7k_1/2, ]fji’k_l/2) and (Ei,k+1/2,a gi,k+1/2). Two further
pieces of information are required: (i) the locations of the centres of LC'V; ; which are given simply by: s; ; =

(si7j+1/2 + si’j_1/2) /2, and (ii) the boundaries of LC'V; ; which are given by S:’,j+1/2 = (Sg,j + S;-’j+1) /2.
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Having defined the topology, a cubic pseudo-density p(s) (or mass per unit length along the second
cascade direction s, which defines the distance along the Lagrangian Y;) can be fitted to the control volume

ILCV; j, where MI}'; is known. An ILC'V;; associated cubic can be expressed in terms of a local non-

. . . _ / / /
dimensional variable { = (5 - 5i,j-1/2) / (Si,j+1/2 - Si,j_1/2) as

pig (O =al% +allc+allc +al)es | celo,1). (3.30)
n (3.30), EZ(-?]-), Ez(’lj), El(-?j) and EZ(-Z-) are coefficients such that
pirg (0) = b1 ;s (3.31)
pii (1) = piy, (3.32)
o MI’:‘J
dpij (¢ -
#()‘ = 0pij, (3.34)
(=1/2
where Asgﬂj = sg’j+1/2—s§’j_1/2. Here ﬁ£J and ﬁfj are the pseudo-densities at the boundaries (S:',j—l/w S:ﬁ,j+1/2)’

and dp; ; denotes the scaled slope of pseudo-density profile at the centre of ILC'V; ;. These are computed in
the same manner as previously detailed.
Once the cubics are defined for each ILCV; ;, then the mass for each LC'V; ; is computed in a similar

manner to (3.25). Thus

mfg Pk (QACH TS MIT 4 Ast, [ By () p >k,

(% i ~
ICC JJ+11//2 pZ, )dCa p= k’,

(3.35)

where (k, p > k) are the ILC'V indices where the boundaries (Si’j_l/g, si’j+1/2) of LCV; ; lie, and (; j11/2 are
the local coordinates corresponding to s; j+1/2. Again, noting that k (j + 1) = p(j) and that by construction

sli+1/z _
pijde = MI;, (3.36)

)
Si_1/2

it follows from (3.35) (with appropriate boundary conditions) that

ZML ZM”, (3.37)

provided that the LCV; ;’s are contiguous and non—overlapplng for reasons mentioned earlier.

Finally ﬁfjl is evaluated as

Mt B (M;fj)” ML}

it = i = = . 3.38
Pig Aziij Aziij Aziij ( )
The exact conservation property of the scheme then follows, using (3.19), (3.27) and (3.37), from
N, Ny N, Ny Ny Ny
—n+1 . X _ n __ n _
) IEINTVEES S 91 LT ol Dol
i=1j=1 i=1j=1 i=1 \j=1 j=1
Ny N. No Ny
= D> D MER; =3 5 AnAy;. (3.39)
Jj=1i=1 i=1j=1

The full algorithm can be summarised as:
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SLICE-2D Algorithm

1. Define the corner points of EC'V; ; to be (;‘L‘i:tl/g, yj:tl/g), t=1,.,Ng,j=1,.., Ny
2. Given p}; = p(zi,y;,t"), compute the mass M E}; = p}, EA; j of ECV ;.

©) a(l) a(2) a(g)) for each EC'V; ;.

3. Compute the cubic coefficients (ai’j, d0Gi 4

4. Locate the corners of LC'V; ; - these are the departure points for the corners of EC'V; ;, i.e. (Ig:tl/zv y}ii1/2) .
5. Locate intersection points (x;-yj, yj), see text for details.

6. Locate the IECYV; ; boundaries {*7";'—1/2,]'7 x2+1/27j .

7. Compute the mass M 1}"; of each IECYV; ; using SLICE-1D.

8. Set the mass of each ILC'V; ; equal to MI},.

9. Compute the distances s; ; that define the boundaries of LC'V; ; along Y.

10. Compute the distances s;-’j that define the boundaries of ILCV; ; along Y;.

11. Compute the cubic coefficients (?1’5?,65}},65?},65?) for each ILCV; ; .

12. Compute the mass M L7 ; of each LCV; ; using SLICE-1D.

13. Transport M L7, to its corresponding EC'V; ; and compute ﬁ?jl =ML};/EA; ;.

3.3 Computational efficiency

For a problem in d dimensions, the cost of SLICE with a k*"-order polynomial piecewise representation
increases only linearly with & and with d (i.e. it is O (kd)), whereas it is O (kd) for a standard Semi-
Lagrangian (SL) scheme. SLICE has an additional overhead associated with the computation of intersections
and piecewise cubic coefficients. No attempt has been made to optimise the present algorithm at this stage
of development. However, preliminary CPU times for the 2D problems in Section 4 with k& = 3 are relatively
comparable to those of a standard SL scheme. Greater savings could be expected for 3D problems and
higher-order polynomial remappings. Therefore the scheme is at least as efficient as current a posteriori

conserving schemes.

4 Numerical examples

Three test problems from the literature (see e.g. Rancic (1995), Nair et al. (1999b), Pudykiewicz & Staniforth
(1984), Sun & Yeh (1997)) are used to validate the proposed scheme and to compare its performance against

that of a standard semi-Lagrangian scheme using bi-cubic interpolation. Note that the departure points for all

the tests are computed analytically. This allows the comparison between pure classical interpolation (in the
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context of semi-Lagrangian schemes) and the present conservative remappping, without the contamination
of departure point error. However, for general problems, the departure points could be computed as in
classical semi-Lagrangian schemes using the discrete velocity field (Staniforth & Caté 1991). For the tests
described in this section, the two methods give virtually indistinguishable results and only those using exact

trajectories are presented in what follows.

4.1 Definition of the idealised cyclogenesis problem

The idealised cyclogenesis problem (see e.g. Rancic (1995), Sun & Yeh (1997), Nair et al. (19995)) consists
of an initial circular vortex with a tangential velocity V(r) = v tanh (r) / cosh? (1), where r is the radial
distance from the centre of the vortex (u, y.), and vg is a constant chosen such that the maximum value of

V (r) is unity (i.e. Vinaz = 1). The analytical solution p (z,y,1) is

p(x,y,t) = — tanh [(y _53’) cos (wt) — ("' _5“"> sin (m)] , (4.40)

where w = V (r) /r is the angular velocity and d is constant.

4.2 Definition of the slotted cylinder problem

The slotted-cylinder problem (see e.g. Zalesak (1979), Sun & Yeh (1997), Nair et al. (19995)) consists of
solid-body rotation of a slotted cylinder in a flow field that rotates with constant angular velocity w about

a point (z., y.). The analytical solution for p(z,y,1) is

po for [¢] > su/2, 7 <o,
p(z,y,t) =3 po for(>s —o, r<o, (4.41)

0  otherwise,

where po is a constant, o is the radius of the cylinder, s, s; are the width and length of the slot respectively.

Here r, £ and ( are defined with respect to the moving centre of the cylinder, i.e.

=z —x.+ 7ycos(wt),
(=y—ye+ysin(wt), (4.42)
r=(e+¢)",

where 7 is the distance from the centre of the flow (z., y.) to the centre of the cylinder (z. — 7 cos (wt) , yo — v sin (wt)).

4.3 Definition of the cosine hill problem

This problem (see e.g. Pudykiewicz & Staniforth (1984)) is similar to the slotted cylinder one, except that

the distribution is much smoother in space. The analytical solution p(z,y,t) is

po [l +cos (Z£)] /2 forr <o,

px,y,t) = (4.43)

0 otherwise,

where pg, o and r have the same definitions as for the slotted cylinder problem.
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4.4 Results

For all the test problems, the initial state po (z,y) is the analytical solution at ¢ = 0,1i.e. po (z,y) = p(z,y,0),
and the analytical solution for the average density,

B 1 Titi/z (Yjt1/z

p(ziyyjpt) = (M) /xi_m /yj_m p(,y,t) dedy, (4.44)
is computed, for convenience, using standard highly-accurate 10-point Gauss-Legendre quadrature (Press,
Teukolsky, Vetterling & Flannery 1992).

Since SLICE-2D computes the evolution of gridbox-averaged density 7 (z;, y;, ), whereas standard semi-

Lagrangian schemes compute pointwise density p (z;, y;,t), two error measures are defined. These are:

1/2
Na: N?J /

1
rms; = | ~—— > > (-5 (4.45)
Y =1 j=1

the root-mean-square difference between the pointwise analytical solution p®” (z;, y;,t) and the numerical

UM

one p (zi,y;,t) ; and

1/2

N, Ny
1
rmsy = | o 2 2 P =AY (4.46)
€ i=1j=1

the root-mean-square difference between the gridboz-averaged analytical solution p*” (x;,y;,t) and the nu-
merical one %™ (2;,y;,t). On the one hand, the first measure, rmsy, is the natural measure for a standard
(interpolating) SL method. For the comparisons described below, however, in calculating rms; for SLICE-

2D, the gridbox-averaged numerical solution is used to approximate the pointwise numerical solution (i.e.

( num —num

Pi ) |SLICE—2D R~ (pi,j ) |SLICE—2D is assumed), and this arguably disadvantages the SLICE-2D method

since rmsy is not a natural error measure for it. On the other hand, the second measure, rmssy is the natural
error measure for the SLICE-2D solution, but not for a standard (interpolating) ST method so it is not
presented for this latter method.

To measure the extent to which mass conservation is respected, a percentage deviation of the total mass

from its initial value is defined as
pdm = 100 x (M} — Myp) /M2, (4.47)

where M7 is the total mass at timestep n given by

No Ny

M =YY ME};. (4.48)

i=1j=1
In addition to results using the SLICE-2D scheme described here, which employs a piecewise cubic
representation, results using two further schemes are also presented. These schemes are identical in every
respect to SLICE-2D except that “PPM1” uses the piecewise parabolic representation of Colella & Woodward
(1984), whereas “PPM2” uses the piecewise parabolic representation of Laprise & Plante (1995).
Results for the three test problems are displayed in Tables 1 - 3 and Figs. 7 - 9.
It can be seen from Tables 1- 3 that, overall, in addition to achieving (to within machine precision) exact

conservation, SLICE-2D is more accurate than the standard bicubic semi-Lagrangian scheme. This is most
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Table 1: Cyclogenesis problem: Q = [0, 10]%, uniform grid with N, =

y = 129, number of time steps

Ny = 16, time step At = 0.3125, Courant number C' = Viqo At/ min(Az, Ay) = 4.

rmsq rMmsy

pdm [%)]

Bicubic SL
SLICE(PPM1)
SLICE(PPM2)
SLICE(PCM)

0.074217 -

0.070100 0.031728
0.078770  0.040950
0.069347  0.031070

+0.2165E-14
+0.4071E-14
—0.5689E-14
+0.7275E-14

Table 2: Slotted cylinder problem: Q = [0,100]%, w = 0.3635 x 10~*s~! N, =

, = 101, N, = 576 (6

rotations), At ~ 1800s, C' ~ 3.27, po = 1,y = 25, 0 = 15, s, = 6, 5, = 25.

rmsy rmss pdm [%)]
Bicubic SL 0.086937 - —0.7310E-01
SLICE(PPM1) 0.070106 0.047171 —0.7746E-12
SLICE(PPM2) 0.087648 0.068697 —0.2039E-12
SLICE(PCM)  0.067331 0.043950 —0.7339E-12
Table 3: Cosine-hill problem: Q = [0,32 x 10°m]”, w = 10=%s~", N, = N, = 33, N; = 142 (2 rotations),
At ~ 8849.565, C' ~ 2, po = 100, v = 8 x 10°m, 0 = 4 x 10°m.
rmsy rmsy pdm [%)]
Bicubic SL 3.844609 - +0.7262E-00
SLICE(PPM1)  1.947452 1.745551 —0.1307-13
SLICE(PPM2) 3.903246 3.691555 +0.7840E-12
SLICE(PCM) 1.597706  1.405720 +40.1437E-12
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Figure 7: Cyclogenesis problem with parameters as in Table 1: (a) bicubic SI solution; (b) SLICE-2D
(PCM) solution; (c¢) error (analytic minus numeric) for bicubic SL; (d) error for SLICE-2D(PCM). For (a)
& (b), only every 2nd point in each direction is shown for pictorial clarity. For (c¢) & (d), contour min

= Contyin = —0.627, contour interval = I,,; = 0.418.
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Figure 8: As in Fig. 7, but for the slotted-cylinder problem with parameters as in Table 2. For (a) & (b)
only every 2nd point in each direction is shown for pictorial clarity. For (c¢) & (d), Contpin = —0.5266,
Teont = 0.3803.
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Figure 9: As in Fig. 7, but for the cosine-hill problem with parameters as in Table 3. For (a) & (b), all
points shown. For (c), Contpmin = —41.27, I.on: = 8.66; and for (d), Contpmin = —15.29, I.on: = 8.66.
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apparent with problem (c) where the distribution is smooth. If a piecewise parabolic representation is adopted
instead of a piecewise cubic one, then the parabola advocated by Colella & Woodward (1984) (PPM1) is
more accurate than that defined by Laprise & Plante (1995) (PPM2). This is probably because PPMI is
continuous across CV boundaries whereas PPM2 is not. It can also be seen that the mass conservation for
the standard SL scheme is somewhat problematic and depends upon the length of integration. For example,
it is almost exact for problem (a), although this is not due to a conservative attribute of the scheme but
rather due to the anti-symmetry of the distribution, whereas it has generated a 0.7% mass increase from its
initial value for the integration of problem (c). However, mass in SLICE-2D is exactly conserved irrespective
of the piecewise representation, the length of integration, or the irregularity of the grid. Examination of Fig.
8 shows that the SLICE-2D(PCM) algorithm much better represents the slot than does the standard bicubic
SL one. Similarly from Fig. 9, SLICE-2D(PCM) gives a sharper less-damped representation of the cosine
hill.

5 Conclusions

A computationally efficient and inherently conservative semi-Lagrangian scheme for transport problems has
been developed. Numerical tests show that the proposed scheme achieves competitive or better accuracy
than that of standard non-conservative interpolating semi-Lagrangian schemes, and with a competitive
computational cost. SLICE is also free of the usual complexity and the potential cost for implementation
in full atmospheric models generally associated with conservative SL schemes. As for standard 3D cascade
interpolation, the extension of the scheme from 2D to 3D Cartesian geometry appears to be relatively
straightforward. In principle monotonocity can be included in an analogous manner as for PPM (Colella &
Woodward 1984). However, unlike PPM, for PCM such an approach would involve a selection process for
the right solution of a quadratic equation, which may prove costly. However, the alternative approach of
using a general monotonicity filter, e.g. (Nair et al. 1999b), also appears viable and might be more efficient.
Extension of the scheme to spherical geometry, on a latitude-longitude grid, will need careful consideration
near the poles and the degree of complexity may depend on how the control volumes associated with the

poles are defined.
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