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Introduction

2D model dynamical core as a laboratory for implementing VFE

Hybrid vertical coordinate based on height instead mass
Spline discretization in the vertical

Covariant formulation

Spectral discretization in the horizontal

Semi-implicit time discretization

Eulerian or semi-Lagrangian advection



Introduction

Euler equations for the dry air case (vertical slice)

@ The Euler equations are

d
d—‘t'+Re’vV+v¢:F
dr R

@, VY=
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. Q
(V-v) = C, e

e Prognostic variables are g =Inp, r=InT and v = (u, w)

T is the temperature, p the pressure v the velocity vector, R is the gas constant for dry air, C,, the specific heat
capacity of dry air at constant pressure, C, the specific heat capacity of dry air at constant volume, F(t, x, z) is
the diabatic momentum forcing, Q(t, x, z) the heat per unit mass and unit time added to the air, ¢(z) = gz the
geopotential, V¢ the gradient of geopotential, Vg the gradient of the logarithm of pressure and V - v the

divergence of the velocity



Vertical coordinate

Height based vertical coordinate

@ The original Cartesian (x, y) coordinates are transformed into
model coordinates (X, Z) such that bottom and top
boundaries are Z = 0 and Z = 1 respectively

@ The spatial domain in Cartesian coordinates is bounded by a
rigid top at z = Ht and a rigid bottom at z = Hg(x)

@ The coordinate transformation is written as

x(X,Z)=X
2(X,Z) = (X, Z)

where (X, Z) satisfies the boundary conditions



Vertical coordinate

Height based vertical coordinate

@ One parameter height hybrid coordinate (Schar, 2002)

sinh (vZ)

Qb(><7z) = HT(]' - Z) + HB(X) S|nh(7)
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VFE

Vertical discretization

@ Similarly to the IFS VFE scheme (Untch and Hortal, 2004)

° are surfaces of constant vertical coordinate
(0<Z <1for1<i<N)and are
applied at Zp =0 and Zy41 =1

° are used for
interpolation (within the definition of the discrete vertical
operators)

@ A B-spline set of basis functions is constructed following the
(de Boor, 2001)



VFE

Vertical discretization

@ There are three types of boundary conditions
e value of the function is zero (for the contravariant vertical
velocity)
e value of the derivative of the function is zero (for second
derivative operators used in diffusion terms)
e functions without boundary condition functions (for instance
logarithm of pressure).

@ A set of discrete vertical derivative operators are constructed
for each type of boundary conditions



VFE

Cubic B-splines interpolation
@ First step is to interpolate from model levels to spline space
0.15
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@ There are N model levels and NN — 3 + 1 breakpoints
@ There are 2 boundary conditions
@ Piecewise polynomials , and are continuous



VFE

Cubic B-splines interpolation

@ Different interpolations depending on the boundary conditions

= 0
~0.05

-0.1

@ Different interpolations depending on the boundary conditions
@ For the vertical velocity
@ If there are not boundary conditions then



VFE

Cubic B-splines interpolation

The number of levels is equal to
the number of degree of
freedom in the determination of

0.15 , the polynomial coefficients:
01 N = — N¢ —
00 o Model levels:
S N
-0.05 ~ @ Polynomial coefficients:
-0.1
o 02 o4 _0s o0s 1O Continuity conditions:

Ne=(N—-3+1)-3

e Boundary conditions:



VFE

Alternative B-splines interpolation

@ All model levels are breakpoints

@ Suitable for splines of any degree, tested for 1, 3 and 5

@ Extrapolation from first and last levels to
boundaries with lower order splines

<K 0.15
@ Polynomial coefficients:
Np = 0.1
@ Continuity conditions: 0.05
Nec=N-K g
c = 0 TR
@ Boundary conditions:
-0.05
@ The number of levels must be equal to ~0.1
the degree of freedom in the
determination of the polynomial 0 02 04 2 06 08 1

coefficients:
N = Np — NC — =



VFE

Garlekin Method in spline space

e Following (Untch and Hortal, 2004) the Garlekin method is
applied in the spline space.

@ Given a continuous vertical operator D the discrete vertical
operator is represented by the matrix

D=BMINA

where A is the projection matrix onto finite element space, B
is the projection matrix from the spline space to the model
levels and the matrices M and N are

1
M,-J-:/O BA(2)B,(2) dz
1
Ny = [ B(2)D (5/(2)) iz

where B;(Z) are the elements of the B-spline basis



VFE

Test: first derivative

@ The numerical error of the discrete vertical derivative for the

test function

is plotted in the figure.
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@ The number of levels is 40, from 0.0125 to 0.9875 at a
constant interval of AZ = 0.0250.



VFE

Test: second derivative

@ The numerical error of the discrete vertical second derivative
for the test function is plotted in the figure.
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@ The number of levels is 40, from 0.0125 to 0.9875 at a
constant interval of AZ = 0.0250.



Covariant formulation

Covariant formulation: metric tensor

@ The formulation of the model only uses " covariant objects”
like " covariant derivative”, " covariant and contravariant
vectors”, " natural coordinate basis”

@ Following the Riemannian Geometry theory, the first step is to
find the expression of the metric tensor in the new coordinates

with the help of the of the coordinate transformation
1+ 9% ¥xiz
GXZ - ze - I 12
Yxpz Y5

where ¥x and 17 are derivatives of (X, Z) and G; is the
metric in Cartesian coordinates which is the identity



Covariant formulation

Covariant formulation: differential operators

@ Differential operators are calculated from the metric tensor
and its inverse (G, and GY) and the Christoffel symbols I',

i L im [ Gmji | Gmk Gjk
G dom (S G

@ Divergence

Voo 1 92 (\detcﬁuf)
|det G|2 OXI
o Gradient
(vry =i OF
X
@ Covariant derivative
(Vuv)' = vy vk

oXJ



Covariant formulation

Covariant formulation: 3D Case

@ For the 3D spherical case the procedure is the same

e if (A, 0,r) are geographical longitude, latitude and distance to
earth’s centre and (X, Y, Z) the model coordinates then
A=X
0=Y
r=y(X,Y,Z)=a+ Hr(1—2Z)+ Hg(X, Y)sinhyZ/sinh~y

@ Metric tensor in (X, Y, Z) coordinates

Y?eos? Y + % Yxty  Uxiz
Gxyz(X,Y,Z) = Yy x VY3 Uyiz
Yzx YzYy V2



Covariant formulation

Covariant formulation: Semi-lagrangian

@ For the semi-lagrangian advection parallel transport is used for
calculating the difference between contravariant vectors at the
departure and arrival points

@ The trajectory is calculated using the geodesic equation
corresponding to the covariant metric tensor

@ In this way the semi-lagrangian scheme has a full covariant
formulation. In particular the physical velocity components
are not used



Semi-implicit

Semi-implicit time discretization

@ Time stepping scheme is a clasical semi-implicit 3TL

@ The semi-implicit formulation follows closely the formulation

used with the , with the use of
a linear model around an isothermal hydrostatic balanced
atmosphere at rest

@ Nevertheless a is used in the reference state



Semi-implicit

Semi-implicit time discretization

@ The geometry of the linear model is defined by coordinate
transformation which is "flat”. In the 2D case it is

x=X
z=¢"(Z)=Hr(1- 2)

@ From this transformation a linear metric tensor is obtained.
Consequently the differential operators of the linear model
also change. In the 2D case

. 1 0
siz= (o 1)

@ The use of ©)*(Z) in height based vertical coordinate is the
counterpart of the use of 7% in mass based vertical coordinate



Semi-implicit

Semi-implicit time discretization

@ A 3TL level scheme is represented by the following equation

_ 1- 1+
T:M( ) — L( )‘f'T( )‘i‘TL( )

M is the non linear model and L the linear model
is a decentering factor which increases stability
= (U, W,r,q) is the state vector

The linear system is solved for in the spectral space



Semi-implicit

Semi-implicit time discretization

@ The following structure equation is obtained, which is similar
to the structure equation of the ALADIN model

(1— 822 (D% + Lz) — B*c2N? DY) — Re¢

@ where the vertical Laplacian Lz and the constants are

1 H. 2 H.
LZ = — D% — DZ
H2 Ht Ht

G
2 =PRT*
o
2 _ g’
G
RT*
H. =
g



Semi-implicit

Semi-implicit time discretization

@ Contrary to the case of the mass-based vertical coordinate no
constraints have to be fulfilled by the vertical operators when
deriving the structure equation

@ There is not a X term in the divergence due to the use of the
contravariant vertical velocity

@ The boundary conditions for the contravariant vertical velocity
can be included in the spline basis for its representation and
therefore they will be automatically fulfilled

@ A disadvantage is that the decentering factor must be greater
than zero for achieving a similar range of stability (according
to the SBH method) than the one obtained with the
mass-based coordinate



Semi-implicit

Semi-implicit time discretization: stability

@ Study of the stability of the system

oX
(X
i (X)
° is the linear model around an isothermal hydrostatic

balanced atmosphere at rest with a reference temperature
different from T



Semi-implicit

Semi-implicit time discretization: stability

@ Maximum module of the amplification matrix eigenvalues for

different values of the parameter o = ;. —1withe=0.1

. I
/)
/
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The horizontal wave numbers selected are the corresponding to a horizontal domain of Nx = 256 grid points and a
horizontal grid spacing of Ax = 2000 m. The time step is At = 50s. The decentering parameter is set to
€ = 0.1. The reference temperature of the implicit part is T* = 350 K.

. In blue, the levels are placed at

the geopotential height of the 62 levels of the IFS model when using the standard atmosphere



Model tests

Tests

@ A set of test cases taken from the literature has been run

e Linear and non linear hydrostatic and non hydrostatic waves
e Cold and warm bubbles with diffusion



Model tests

Tests: Linear hydrostatic wave (Bubnova et al., 1995)

Vertical velocity (m/s) x10°

grid point

Isothermal atmosphere with N = 0.02 s72and U =8ms ! and the bell shaped mountain has Hy = 1 m and
a = 16 km. The horizontal and vertical resolutions are AX = 3.2 km and Hy AZ = 100 m with the top of the
atmosphere placed at Hy = 20 km. The absorbing layer begins at 10 km. The integration is done up to

t* = tU/a = 120 with At = 90s



Model tests

Tests: Quasi-linear non hydrostatic wave (Bubnova et al., 1995)

Vertical velocity (m/s)

grid point

grid point

Quasi-linear non hydrostatic wave, with the following changes respect to the previous hydrostatic test:
U=15ms™1, Hp = 100 m and a = 500 m. The horizontal and vertical resolutions are AX = 100 m and
Hy AZ = 100 m with the top of the atmosphere placed at Hy = 20 km. The absorbing layer begins at 14 km.

The integration is done up to t* = tU/a = 90 with At = 1s



plicit Model tests

Tests: complex orography (Schar et al., 2002)

Vertical velocny (m/s)
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Upstream profile is defined by constant value of the Brunt-Viisala frequency N = 0.01 571 and the horizontal
velocity u = 10 ms— 1t together with the upstream surface temperature T = 288 K and pressure p = 1000 hPa.
The mountain ridge is a bell shaped structure with superposed small scale features Hy = 250 m, a = 5000 m and
b = 4000 m. The vertical resolution is 150 m and the horizontal resolutions is 250 m. The number of vertical levels

is 130. The time step is At = 4s



Tests: warm bubble (Janjic et al., 2001)

Potential temperature (K)
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The integration domain extended 25.6 km in the horizontal direction and 13.5 km in the vertical. The center of the
initial disturbance is in the middle of the domain in the horizontal direction. The horizontal and vertical resolutions
are 100 m. The time step is 0.3 s. Cyclic boundary conditions in the horizontal direction are used. The diffusion

coefficient is 50 m2s ! for both components of the velocity and the temperature



Model tests

Tests: cold bubble (Straka, 1993)

Potential temperature (K)

grid point

50 100 150 00 250 300 350
grid point

The integration domain spans 25.6 km in the horizontal direction and 6.5 km in the vertical. The center of the
initial disturbance is in the middle of the domain in the horizontal direction, which is the left boundary in the
figures. The horizontal and vertical resolutions are 50 m. The time step is 0.15s. Cyclic boundary conditions in the
horizontal direction are used. The diffusion coefficient is 75 m?s ! for both components of the velocity and the
temperature. Boundary conditions are: vertical velocity is zero at the boundaries and first derivative respect to

vertical coordinate of temperature, pressure and horizontal velocity is zero at the boundaries



Conclusions

Conclusions

@ 2D non hydrostatic dynamical core previous to a 3D
implementation with height based hybrid vertical coordinate
and vertical finite elements

@ Covariant formulation of all aspects of the model including
the semi-lagrangian scheme

o Contravariant vertical velocity as prognostic variable which
eases the implementation of the boundary conditions
@ Favourable aspects

o No vertical operator contraints
o VFE possible with high accuracy in the vertical operators
e Clean implementation of boundary conditions



Conclusions

Conclusions: Unfavourable aspects

@ Stability of the linear model needs a small non-zero
decentering factor

@ Instability for moderate and high mountain slopes,
height /width ratio over 5%

o The instability seems to be produced by the difference between
the linear and non linear terms in the gradient pressure term of
the momentum equation

e This problem seems to be related with the horizontal spectral
discretization which needs a horizontally uniform reference
state and geometry

e The range of permitted slopes must be increased before
implementing the scheme in a 3D operational model. Some
hints: papers about the stability of the ALADIN model and
how it was solved.



Conclusions

Thank you for your attention!



	Introduction
	Vertical coordinate
	VFE
	Covariant formulation
	Semi-implicit
	Model tests
	Conclusions

