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2D model dynamical core as a laboratory for implementing VFE

Hybrid vertical coordinate based on height instead mass

Spline discretization in the vertical

Covariant formulation

Spectral discretization in the horizontal

Semi-implicit time discretization

Eulerian or semi-Lagrangian advection
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Euler equations for the dry air case (vertical slice)

The Euler equations are

dv

dt
+ R er ∇v +∇φ = F

dr

dt
+

R

Cv
(∇ · v) =

Q

Cv er

dq

dt
+

Cp

Cv
(∇ · v) =

Q

Cv er

Prognostic variables are q = ln p, r = lnT and v = (u,w)

T is the temperature, p the pressure v the velocity vector, R is the gas constant for dry air, Cp the specific heat

capacity of dry air at constant pressure, Cv the specific heat capacity of dry air at constant volume, F(t, x, z) is

the diabatic momentum forcing, Q(t, x, z) the heat per unit mass and unit time added to the air, φ(z) = gz the

geopotential, ∇φ the gradient of geopotential, ∇q the gradient of the logarithm of pressure and ∇ · v the

divergence of the velocity
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Height based vertical coordinate

The original Cartesian (x , y) coordinates are transformed into
model coordinates (X ,Z ) such that bottom and top
boundaries are Z = 0 and Z = 1 respectively

The spatial domain in Cartesian coordinates is bounded by a
rigid top at z = HT and a rigid bottom at z = HB(x)

The coordinate transformation is written as

x(X ,Z ) = X

z(X ,Z ) = ψ(X ,Z )

where ψ(X ,Z ) satisfies the boundary conditions
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Height based vertical coordinate

One parameter height hybrid coordinate (Schär, 2002)

ψ(X ,Z ) = HT (1− Z ) + HB(X )
sinh (γZ )

sinh (γ)
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Vertical discretization

Similarly to the IFS VFE scheme (Untch and Hortal, 2004)
there are not staggered variables

Model levels are surfaces of constant vertical coordinate
(0 < Zi < 1 for 1 ≤ i ≤ N) and boundary conditions are
applied at Z0 = 0 and ZN+1 = 1

Splines in the closed interval Z ∈ [0, 1] are used for
interpolation (within the definition of the discrete vertical
operators)

A B-spline set of basis functions is constructed following the
recursive de Boor Algorithm (de Boor, 2001)
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Vertical discretization

There are three types of boundary conditions

value of the function is zero (for the contravariant vertical
velocity)
value of the derivative of the function is zero (for second
derivative operators used in diffusion terms)
functions without boundary condition functions (for instance
logarithm of pressure).

A set of discrete vertical derivative operators are constructed
for each type of boundary conditions
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Cubic B-splines interpolation

First step is to interpolate from model levels to spline space
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There are N model levels and N − 3 + 1 breakpoints

There are 2 boundary conditions

Piecewise polynomials φ(Z ), φ′(Z ) and φ′′(Z ) are continuous
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Cubic B-splines interpolation

Different interpolations depending on the boundary conditions
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Different interpolations depending on the boundary conditions

For the vertical velocity φ(0) = φ(1) = 0

If there are not boundary conditions then φ′′′(0) = φ′′′(1) = 0
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Cubic B-splines interpolation
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The number of levels is equal to
the number of degree of
freedom in the determination of
the polynomial coefficients:
N = NP − NC − NB

Model levels:
N

Polynomial coefficients:
NP = (N − 3 + 2) · (3 + 1)

Continuity conditions:
NC = (N − 3 + 1) · 3
Boundary conditions:
NB = 2
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Alternative B-splines interpolation

All model levels are breakpoints

Suitable for splines of any degree, tested for 1, 3 and 5

Extrapolation from first and last levels to
boundaries with lower order splines
L < K

Polynomial coefficients:
NP = (N − 1) · (K + 1) + 2 · (L + 1)

Continuity conditions:
NC = N · K
Boundary conditions:
NB = 2

The number of levels must be equal to
the degree of freedom in the
determination of the polynomial
coefficients:
N = NP − NC − NB ⇒ L = K+1
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Garlekin Method in spline space

Following (Untch and Hortal, 2004) the Garlekin method is
applied in the spline space.

Given a continuous vertical operator D the discrete vertical
operator is represented by the matrix

D = B M−1 N A

where A is the projection matrix onto finite element space, B
is the projection matrix from the spline space to the model
levels and the matrices M and N are

Mij =

∫ 1

0
Bi (Z)Bj (Z) dZ

Nij =

∫ 1

0
Bi (Z)D

(
Bj (Z)

)
dZ

where Bi (Z) are the elements of the B-spline basis
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Test: first derivative

The numerical error of the discrete vertical derivative for the
test function f (Z ) = sin(6πZ ) is plotted in the figure.
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The number of levels is 40, from 0.0125 to 0.9875 at a
constant interval of ∆Z = 0.0250.
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Test: second derivative

The numerical error of the discrete vertical second derivative
for the test function f (Z ) = sin(6πZ ) is plotted in the figure.
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Covariant formulation: metric tensor

The formulation of the model only uses ”covariant objects”
like ”covariant derivative”, ”covariant and contravariant
vectors”, ”natural coordinate basis”

Following the Riemannian Geometry theory, the first step is to
find the expression of the metric tensor in the new coordinates
with the help of the Jacobian of the coordinate transformation

GXZ =

(
1 0
ψX ψZ

)T

Gxz

(
1 0
ψX ψZ

)
=

(
1 + ψ2

X ψXψZ

ψXψZ ψ2
Z

)
where ψX and ψZ are derivatives of ψ(X ,Z ) and Gxz is the
metric in Cartesian coordinates which is the identity
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Covariant formulation: differential operators

Differential operators are calculated from the metric tensor
and its inverse (Gij , and G ij) and the Christoffel symbols Γi

jk

Γi
jk =

1

2
G im

(
Gmj

∂X k
+

Gmk

∂X j
−

Gjk

∂Xm

)
Divergence

∇ · v =
1

| detG |
1
2

∂

∂X j

(
| detG |

1
2 U j

)
Gradient

(∇f )i = G ij ∂f

∂X j

Covariant derivative

(∇uv)i = U j ∂V
i

∂X j
+ Γi

jkU
jV k



Introduction Vertical coordinate VFE Covariant formulation Semi-implicit Model tests Conclusions

Covariant formulation: 3D Case

For the 3D spherical case the procedure is the same

if (λ, θ, r) are geographical longitude, latitude and distance to
earth’s centre and (X ,Y ,Z ) the model coordinates then

λ = X

θ = Y

r = ψ(X ,Y ,Z ) = a + HT (1− Z ) + HB(X ,Y ) sinh γZ/sinh γ

Metric tensor in (X ,Y ,Z ) coordinates

GXYZ (X ,Y ,Z ) =

ψ2 cos2 Y + ψ2
X ψXψY ψXψZ

ψYψX ψ2 + ψ2
Y ψYψZ

ψZψX ψZψY ψ2
Z





Introduction Vertical coordinate VFE Covariant formulation Semi-implicit Model tests Conclusions

Covariant formulation: Semi-lagrangian

For the semi-lagrangian advection parallel transport is used for
calculating the difference between contravariant vectors at the
departure and arrival points

The trajectory is calculated using the geodesic equation
corresponding to the covariant metric tensor

In this way the semi-lagrangian scheme has a full covariant
formulation. In particular the physical velocity components
are not used



Introduction Vertical coordinate VFE Covariant formulation Semi-implicit Model tests Conclusions

Semi-implicit time discretization

Time stepping scheme is a clasical semi-implicit 3TL

The semi-implicit formulation follows closely the formulation
used with the mass-based vertical coordinate, with the use of
a linear model around an isothermal hydrostatic balanced
atmosphere at rest

Nevertheless a flat orography is used in the reference state
instead of a constant hydrostatic pressure
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Semi-implicit time discretization

The geometry of the linear model is defined by coordinate
transformation which is ”flat”. In the 2D case it is

x = X

z = ψ∗(Z ) = HT (1− Z )

From this transformation a linear metric tensor is obtained.
Consequently the differential operators of the linear model
also change. In the 2D case

G ∗XZ =

(
1 0
0 H2

T

)
The use of ψ∗(Z ) in height based vertical coordinate is the
counterpart of the use of π∗S in mass based vertical coordinate
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Semi-implicit time discretization

A 3TL level scheme is represented by the following equation

Xn+1 − Xn−1

2∆t
= M(Xn)− L(Xn) +

1− ε
2

L(Xn−1) +
1 + ε

2
L(Xn+1)

M is the non linear model and L the linear model

ε is a decentering factor which increases stability

X = (U,W, r,q) is the state vector

The linear system is solved for Xn+1 in the spectral space
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Semi-implicit time discretization

The following structure equation is obtained, which is similar
to the structure equation of the ALADIN model(

I− β2c2
∗
(
D2

X + LZ

)
− β4c2

∗N
2
∗ D2

X

)
Wn+1 = RC

where the vertical Laplacian LZ and the constants are

LZ =
1

H2
∗

((
H∗

HT
D2

Z

)2

−
(

H∗

HT
DZ

))

c2
∗ =

Cp

Cv
RT∗

N2
∗ =

g2

CpT∗

H∗ =
RT∗

g

β = (1 + ε) ∆t
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Semi-implicit time discretization

Contrary to the case of the mass-based vertical coordinate no
constraints have to be fulfilled by the vertical operators when
deriving the structure equation

There is not a X term in the divergence due to the use of the
contravariant vertical velocity

The boundary conditions for the contravariant vertical velocity
can be included in the spline basis for its representation and
therefore they will be automatically fulfilled

A disadvantage is that the decentering factor must be greater
than zero for achieving a similar range of stability (according
to the SBH method) than the one obtained with the
mass-based coordinate
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Semi-implicit time discretization: stability

Study of the stability of the system

∂X

∂t
= L•(X)

L• is the linear model around an isothermal hydrostatic
balanced atmosphere at rest with a reference temperature T •

different from T ∗
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Semi-implicit time discretization: stability

Maximum module of the amplification matrix eigenvalues for
different values of the parameter α = T•

T∗ − 1 with ε = 0.1
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The horizontal wave numbers selected are the corresponding to a horizontal domain of NX = 256 grid points and a

horizontal grid spacing of ∆x = 2000 m. The time step is ∆t = 50 s. The decentering parameter is set to

ε = 0.1. The reference temperature of the implicit part is T∗ = 350 K . In green, the number of vertical levels are

50 with a regular grid spacing and the top of the atmosphere is placed at 30 km. In blue, the levels are placed at

the geopotential height of the 62 levels of the IFS model when using the standard atmosphere
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Tests

A set of test cases taken from the literature has been run

Linear and non linear hydrostatic and non hydrostatic waves
Cold and warm bubbles with diffusion
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Tests: Linear hydrostatic wave (Bubnová et al., 1995)
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Isothermal atmosphere with N = 0.02 s−2 and U = 8 ms−1 and the bell shaped mountain has H0 = 1 m and

a = 16 km. The horizontal and vertical resolutions are ∆X = 3.2 km and HT ∆Z = 100 m with the top of the

atmosphere placed at HT = 20 km. The absorbing layer begins at 10 km. The integration is done up to

t∗ = tU/a = 120 with ∆t = 90 s
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Tests: Quasi-linear non hydrostatic wave (Bubnová et al., 1995)

grid point
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Quasi-linear non hydrostatic wave, with the following changes respect to the previous hydrostatic test:

U = 15 ms−1, H0 = 100 m and a = 500 m. The horizontal and vertical resolutions are ∆X = 100 m and

HT ∆Z = 100 m with the top of the atmosphere placed at HT = 20 km. The absorbing layer begins at 14 km.

The integration is done up to t∗ = tU/a = 90 with ∆t = 1 s
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Tests: complex orography (Schär et al., 2002)
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Upstream profile is defined by constant value of the Brunt-Väisälä frequency N = 0.01 s−1 and the horizontal

velocity u = 10 ms−1 together with the upstream surface temperature T = 288 K and pressure p = 1000 hPa.

The mountain ridge is a bell shaped structure with superposed small scale features H0 = 250 m, a = 5000 m and

b = 4000 m. The vertical resolution is 150 m and the horizontal resolutions is 250 m. The number of vertical levels

is 130. The time step is ∆t = 4 s
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Tests: warm bubble (Janjic et al., 2001)

grid point
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The integration domain extended 25.6 km in the horizontal direction and 13.5 km in the vertical. The center of the

initial disturbance is in the middle of the domain in the horizontal direction. The horizontal and vertical resolutions

are 100 m. The time step is 0.3 s. Cyclic boundary conditions in the horizontal direction are used. The diffusion

coefficient is 50 m2s−1 for both components of the velocity and the temperature
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Tests: cold bubble (Straka, 1993)
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The integration domain spans 25.6 km in the horizontal direction and 6.5 km in the vertical. The center of the

initial disturbance is in the middle of the domain in the horizontal direction, which is the left boundary in the

figures. The horizontal and vertical resolutions are 50 m. The time step is 0.15 s. Cyclic boundary conditions in the

horizontal direction are used. The diffusion coefficient is 75 m2s−1 for both components of the velocity and the

temperature. Boundary conditions are: vertical velocity is zero at the boundaries and first derivative respect to

vertical coordinate of temperature, pressure and horizontal velocity is zero at the boundaries
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Conclusions

2D non hydrostatic dynamical core previous to a 3D
implementation with height based hybrid vertical coordinate
and vertical finite elements

Covariant formulation of all aspects of the model including
the semi-lagrangian scheme

Contravariant vertical velocity as prognostic variable which
eases the implementation of the boundary conditions

Favourable aspects

No vertical operator contraints
VFE possible with high accuracy in the vertical operators
Clean implementation of boundary conditions
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Conclusions: Unfavourable aspects

Stability of the linear model needs a small non-zero
decentering factor

Instability for moderate and high mountain slopes,
height/width ratio over 5%

The instability seems to be produced by the difference between
the linear and non linear terms in the gradient pressure term of
the momentum equation
This problem seems to be related with the horizontal spectral
discretization which needs a horizontally uniform reference
state and geometry
The range of permitted slopes must be increased before
implementing the scheme in a 3D operational model. Some
hints: papers about the stability of the ALADIN model and
how it was solved.
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Thank you for your attention!
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