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Motivation
Dynamics and physics timestep are the same in the Met Office Unified Model (UM).

e Due to the unconditional stability of the semi-Lagrangian (SL) advection method
used this is often too large for fast physics processes:

— Grid point storms may occur.

— Numerical instabilities and inaccuracies in the boundary layer.
Current strategy:

e Substep convection within a model timestep.

e Overweight numerical scheme for boundary layer vertical diffusion —- improved
stability but loss of accuracy. Instabilities still occur.




Mathematical formulation

Physics-dynamics coupling in the UM:

slow phys: fast phys:
| n+1
tlevel n| — rad-+gwd-+micphys — |SL adv| — cnv-+bi-+hyd — |solver| — |tlevel n+

Nonlinear diffusion equation in the boundary layer:

0X O0F 0X L Ly
= h F(K,.X)=K— X = T:T__c__67 ot — c c
5 = 5, \Where (K, X) 5, {u, v, 1 chl chf ot Q+C]l+Qf}

is discretized in space. Derived ODE problem is:

e Often stiff, i.e. stable but with multiple (both fast and slow) timescales. Stiffness
depends on K magnitude and vertical resolution Az.

e Nonlinear.




Numerical Scheme

Because of stiffness, an implicit scheme is used:

Xn+1_Xn A
~ - (1= F(K", X") +yF (K" X" ], v >1 (1)

To avoid expensive Newton iterations approximate K"*' ~ K" and thus obtain a
solution by solving a linear system of equations:

(I — AtM) X" = X" + 2—2 A1 —~)F(K", X")] (2)

where,

_ _ n+l _ — noxnt] = — L L
X = (Xp), 7= (w), MX"™ = = [yF(K", X"™)| = {[Az (WK’“ Az, )L}

for k =1,2,...,N. As K" is available M is a banded matrix of constant coefficients
which depends on the vertical discretization operator A.




Stability of the scheme

Scheme (1) is unconditionally stable. However, its approximation (2) is not (Kalnay-
Kanamitsu 1987):

e The region for which this scheme is stable depends on: K magnitude, ~, nonlin-
earity degree and timestep length.

e Overweighting ~ sufficiently (e.g. set v = 3) may remove instabilities. But it
introduces too much damping —> forecasting accuracy deteriorates.

Reducing At in (2) is one way of improving:

e Generally smaller truncation errors and fewer instabilities.

e Cycle boundary layer/surface processes —> convection and hydrology has also to
be cycled (coupled parametrisations).




Experimental fractional timestepping scheme in the UM: BL discretization

Use 6t = At/k where k is number of substeps, At SL advection timestep. Solve:

Xn+1 — XTL* AT * * *
= o |-V XY) £y PR, X )

Xtk _Xn*-l—k—l : A T
ot Az L

(1 . 7)F<Kn*+k_1, Xn*—i—k—l) + ’)/F(Kn*+k_1, Xn-l—k)] (4)

where K771 = K(X" 1) and X", ¢ =1,2,...,k is calculated as follows:

2nd cycle

slow phys * * bl " enw * bl 9 cnu Xy f bl
X" s xn \cnv} X" } Xn—|—£ y X" +1 \ Xn+2 Lo 2 X" +k—1 } XTH—Ij
1st cycle kth cycle




Control Run: Climate Resolution (N48) 3 convection substeps
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Figure 1: Timeseries of boundary layer increments from Global model at climate resolution for u, v wind components. Each line
corresponds to a different BL level: the two bottom levels are coloured in red, the four top in lime and the remaining levels in black.
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Experimental Run: Climate Resolution (N48) 3 full physics substeps
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Figure 2: Timeseries of boundary layer increments as previously but with 3 full fast physics substeps.




Control Run: Global operational model with 2 convection substeps
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Experimental Run: Global model with 2 full physics substeps
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Figure 4: As previously but experimental model with 2 full physics substeps.
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Figure 5: Timeseries of boundary layer increments for u,v,T from a SW Asia LAM test.




LAM experimental run: 2 full physics substeps
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Figure 6: As previously but with 2 full “fast physics” substeps.




Concluding Remarks

The numerical scheme used for the boundary layer vertical diffusion in the UM
exhibits unphysical oscillations at isolated points in various resolutions due to numerical
instabilities or inaccuracies. Recent investigations with the UM have shown:

e Increasing the scheme’s weights is an effective way to eliminate these oscillations
but this tends to deteriorate the forecasting accuracy as too much damping is
introduced.

e Substepping fast physics processes seems to reduce unwanted oscillations and in
some cases eliminate them.

— However, there is a significant overhead: the substepped global model at oper-
ational resolution with 2 full fast physics substeps is about 12% more expensive
in CPU time than the control (2 convection steps).

— A mixture of substepping - overweighting is perhaps a better choice if we can
afford the extra CPU cost.




Future Work: Use of implicit exhange coefficients

Approximate K" ~ K?P*)l in (1) where KZ};L)l ~ K(X") is a predictor for the
exchange coefficients at timelevel n+1. This should be very close to the unconditionally
stable implicit scheme (1). The new algorithm will be part of a modified SL scheme:

e Dynamics and physics are iterated twice to enable departure point calculations
using time interpolated rather than extrapolated winds (current scheme but not
ideal as it can lead to instabilities).

e Clearly more expensive but it may have similar benefits in forecasting accuracy as

increasing resolution. If the interpolated SL scheme is an acceptable approach the

extra effort to provide K E’L]j)l is small:

Set K™ «+— K™ where K7 = K(X"t) and X"t is the value of X at timelevel
(P) (1) (1) (1) (1)

n + 1 as estimated at the end of first iteration.

Other, more stable, algorithms to replace (2) are also investigated.




