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The challenge

Requirements of a new scheme:

1. Unconditional stability

2. Second-order accuracy

3. Monotonic damping (damping rate increases as diffusion
coefficient increases)

4. Maintenance of any steady state
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Preliminaries 1

Consider the general diffusion equation:

∂F

∂t
=

∂

∂x

(
K

∂F

∂x

)
Assume K constant (linear case) and make a Fourier decom-
position.

Gives first-order damping equation :
dF

dt
= −βF

Damping coefficient is β ≡ k2K.
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Preliminaries 2

Consider two-time-level discrete schemes of the form:
F t+∆t − F t

∆t
= −β

2

[
(1 + ε) F t+∆t + (1− ε) F t

]
Response function is

E ≡ F t+∆t

F t =
1− (1− ε) β∆t/2

1 + (1 + ε) β∆t/2

ε = −1 ⇒ explicit scheme;
ε = 0 ⇒ Crank-Nicolson scheme;
ε = 1 ⇒fully implicit scheme.

Here though retain ε as arbitrary function (independent of
time).
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1. Unconditional stability

Requires |E| ≤ 1 for all ∆t.

Holds provided that both:

• β∆t ≥ 0
(i.e. physical system is stable )

and

• ε ≥ 0
(corresponds to requirement of off-centring weights ≥ 1/2).
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2. Second-order accuracy

Requires E = Eexact + O
(
∆t3

)
where Eexact = e−β∆t.

Expanding Eexact and E for small β∆t and εβ∆t, this requires

1− β∆t + (1 + ε)
(β∆t)2

2
+ O

(
∆t3

)
= 1− β∆t +

(β∆t)2

2
+ O

(
∆t3

)
Satisfied if ε = O (β∆t).

[Trivially satisfied by ε = 0, consistent with the Crank-Nicolson
scheme being second-order accurate.]
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3. Monotonic damping

Requires
∂ |E|2

∂β
< 0

ie: [
1− (β∆t)

2
(1− ε)

][
1− (β∆t)2

2

∂ε

∂ (β∆t)

]
> 0
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Development of the new scheme 1

Choosing

ε =
nβ∆t

1 + nβ∆t
with n > 1/2 satisfies all three constraints. This gives

F t+∆t − F t

∆t
= −β

2

[(
1 +

nβ∆t

1 + nβ∆t

)
F t+∆t +

(
1− nβ∆t

1 + nβ∆t

)
F t

]
Works because:

• It dynamically keeps the off-centring parameter close to
zero for small damping coefficients

• But , as the damping increases, it asymptotes to fully im-
plicit off-centring.
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But...

...in general β is an operator!

Can the scheme be written as a multi-step scheme?
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Development of the new scheme 2

Response function is

E =
1 +

(
n− 1

2

)
β∆t

1 +
(
n + 1

2

)
β∆t + n (β∆t)2

Choosing n ≥
√

2 + 3/2 guarantees that n > 1/2 and the de-
nominator can be factorised in real space , and rewritten as

E =
1− (1− a− b) β∆t

(1 + aβ∆t) (1 + bβ∆t)

where a and b are the two roots of

y2 −
(

n +
1

2

)
y + n = 0.
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Proposed scheme

Original scheme can then be written as

F ∗ − F t

∆t
= −aβF ∗

F ∗∗ − F ∗

∆t
= − (1− a− b) βF ∗

F t+∆t − F ∗∗

∆t
= −bβF t+∆t

i.e. as an implicit-explicit-implicit multi-step scheme.

As n increases for fixed β∆t, off-centring increases . There-
fore choose n as small as permitted, i.e. n =

√
2 + 3/2.

⇒ a = b = 1 + 1/
√

2 therefore optimising the symmetry.
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Extension to the nonlinear case 1

Extension based on Kalnay & Kanamitsu (1988) ’s generalised
damping equation:

dF

dt
= −

(
KFP

)
F + S

Result is two semi-implicit steps:

X∗ −Xt

∆t
= I1

∂

∂z

[
K(Xt)

∂X∗

∂z

]
− E1

∂

∂z

[
K(Xt)

∂Xt

∂z

]
+ (I1 − E1) S

Xt+∆t −X∗

∆t
= I2

∂

∂z

[
K(Xt)

∂Xt+∆t

∂z

]
−E2

∂

∂z

[
K(Xt)

∂X∗

∂z

]
+(I2 − E2) S
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Extension to the nonlinear case 2

But! Need to estimate P to evaluate I1 (P ), I2 (P ), E1 (P ) and
E2 (P )...

Parameter P characterises the nonlinearity of the problem

Empirically: P ' 1/4 for unstable BLs; P ' 2 for stable BLs

For P = 2: I1 = I2 ' 5; E1 ' 6; E2 ' 3

For P = 1/4: I1 = I2 ' 2; E1 ' 3; E2 ' 0

For details see Wood, Diamantakis & Staniforth (QJRMS 2007)
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Global Unified Model: 40km at midlatitudes; 70 levels; ∆t = 15 mins.

Boundary-layer zonal wind increments at two successive
timesteps

Standard over-weighted scheme ( ε = 2)
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Global Unified Model: 40km at midlatitudes; 70 levels; ∆t = 15 mins.

Boundary-layer zonal wind increments at two successive
timesteps

New scheme ( P = 1/4 unstable; P = 2 stable)
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Global Unified Model: 40km at midlatitudes; 70 levels; ∆t = 15 mins.
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Standard scheme: physics timestep=15 min, epsilon=2

Timeseries of boundary-layer zonal wind and temperature
increments

Standard over-weighted scheme ( ε = 2)
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Global Unified Model: 40km at midlatitudes; 70 levels; ∆t = 15 mins.
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New scheme: physics timestep=15 min, P=2

Timeseries of boundary-layer zonal wind and temperature
increments

New scheme ( P = 1/4 unstable; P = 2 stable)

c©Crown Copyright 2007 18



© Crown copyright 2004 Page 2

Conclusions

• New scheme developed that meets 4 identified criteria

• Extended to nonlinear case

• Diffusion coefficient frozen in time therefore cost is two 1D
tri-diagonal solutions - double that of traditional schemes,
but much cheaper than substepped schemes

• One free parameter, P = estimate of nonlinearity of diffu-
sion coefficient, depends on stability of boundary layer

• Good accuracy achieved by choosing only one value for
unstable and one value for stable boundary layers
(e.g. Punstable = 1/4; Pstable = 2)
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QUESTIONS?
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Figure 1:
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Figure 2:
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Extension to the nonlinear case

Kalnay & Kanamitsu (1988) generalised damping equation:
dF

dt
= −

(
KFP

)
F + S

Steady state is

F0 =

(
S

K

)1/(P+1)

Linearise about F0:

dF ′

dt
= −

(
KFP

0

) (
F ′ + PF ′

)
with solution

F ′ ∝ e−β(1+P )t

where β ≡ KFP
0 .
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Nonlinear aspects

Consider schemes with diffusion coefficient, KFP , evalu-
ated explicitly.

Discrete generalised equation is

F t+∆t − F t

∆t
= −β

2

[
(1 + ε) F t+∆t + (1− ε) F t + 2PF t

]
with response function

E =
1− β∆t

2 (1− ε + 2P )

1 + β∆t
2 (1 + ε)
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Satisfying the requirements

1. Unconditional stability: requires ε ≥ P

2. Second-order accuracy: requires ε = P + O (β∆t)

3. Monotonic damping: requires[
1− β∆t

2
(1− ε + 2P )

]
×[

1 + P + β∆tP (1 + ε)− (β∆t)2

2
(1 + P )

∂ε

∂β∆t

]
> 0
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Development of the nonlinear scheme 1

Choosing

ε = P + (1 + P )

(
nβ∆t

1 + nβ∆t

)
with n > (1 + P ) /2 satisfies all three constraints.

This gives the scheme as

F t+∆t − F t

∆t

= −β

2
(1 + P )

[(
1 +

nβ∆t

1 + nβ∆t

)
F t+∆t +

(
1− nβ∆t

1 + nβ∆t

)
F t

]
Note: for P = 0 (linear case) this reduces to previous scheme.
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Development of the nonlinear scheme 2

No longer want to factorise E.

Operating on F by β has the discrete response

βF → β
(
F ∗ + PF t

)
Therefore need to factorise

E∗ ≡ F t+∆t + PF t

F t + PF t =
E + P

1 + P
ie

E∗ =
1 +

(
n + P−1

2

)
β∆t + nP (β∆t)2

1 +
(
n + P+1

2

)
β∆t + n (P + 1) (β∆t)2
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Development of the nonlinear scheme 3

Viable scheme requires that E∗ can be written as

E∗ =
(1 + E1β∆t) (1 + E2β∆t)

(1 + I1β∆t) (1 + I2β∆t)

with E1, E2, I1 and I2 real.

This can be achieved by requiring that

n ≥
(√

2 +
3

2

)
(P + 1) >

P + 1

2
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Development of the nonlinear scheme 3

Again choose the smallest viable value for n, i.e.

n =
(√

2 + 3/2
)

(P + 1)

to give

E1 =

(
1 +

1√
2

) [
P +

1√
2
±

√
P

(√
2− 1

)
+

1

2

]

E2 =

(
1 +

1√
2

) [
P +

1√
2
∓

√
P

(√
2− 1

)
+

1

2

]

I1 = I2 =

(
1 +

1√
2

)
(1 + P )
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Proposed nonlinear scheme

The proposed, full non-linear scheme is therefore

F ∗ − F t

∆t
= −I1

{[
K

(
F t

)P
]

F ∗ − S

}
F ∗∗ − F ∗

∆t
= E1

{[
K

(
F t

)P
]

F ∗ − S

}
F ∗∗∗ − F ∗∗

∆t
= E2

{[
K

(
F t

)P
]

F ∗∗ − S

}
F t+∆t − F ∗∗∗

∆t
= −I2

{[
K

(
F t

)P
]

F t+∆t − S

}
Including the source term S this way ensures the scheme re-
tains exact steady state and satisfies fourth requirement.
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An alternative form

...and finally...

Reduce scheme to two semi-implicit steps by combining each
explicit step with an implicit step:

F ∗ − F t

∆t
= −I1

[
K

(
F t

)P
]

F ∗ + E1

[
K

(
F t

)P
]

F t + (I1 − E1) S

F t+∆t − F ∗

∆t
= −I2

[
K

(
F t

)P
]

F t+∆t+E2

[
K

(
F t

)P
]

F ∗+(I2 − E2) S

But! Need to estimate P to evaluate I1, I2, E1 and E2...

Actual nonlinearity seems to be in range 0 ≤ P ≤ 2.

Choosing P ≈ 3/2 seems to work well.
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Figure 3:

(a) Actual P = 1/2
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(b) Actual P = 1
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(c) Actual P = 3/2
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(d) Actual P = 2
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