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The challenge

Requirements of a new scheme:

1. Unconditional stability

2. Second-order accuracy

3. Monotonic damping (damping rate increases as diffusion
coefficient increases)

4. Maintenance of any steady state
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Prelimmaries 1

Consider the general diffusion equation:
oF 0 OF
o " on (Ka—)

Assume K constant (linear case) and make a Fourier decom-
position.

Gives first-order damping equation

dF
a7
Damping coefficientis 3 = k°K.
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Preliminaries 2

Consider two-time-level discrete schemes of the form:

Ft—I—At o Ft
A7 :—g (1+6)Ft+At+(1—e)Ft}

Response function Is
FHAL 1 (1 —€) BAL/2
Ft 1+ (14 ¢€) BAL/2

e = —1 = explicit scheme;
e = 0 = Crank-Nicolson scheme;
e = 1 =fully implicit scheme.

Here though retain ¢ as arbitrary function (independent of
time).
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1. Unconditional stability

Requires |E| <1 forall At.

Holds provided that both:

o BAt > 0
(l.e. physical system is stable )

and

oc > ()
(corresponds to requirement of off-centring weights > 1/2).
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2. Second-order accuracy

Requires E = Eepqer + O (At) where Eepqer = e P50

Expanding FE..q..: and E for small At and ¢3At, this requires

2 2
1 — BAt+ (1 +¢) & ét) (ﬁét)

1O (At3) —1— BAt+ +O (At?’)
Satisfied if ¢ = O (GAL).

[Trivially satisfied by ¢ = 0, consistent with the Crank-Nicolson
scheme being second-order accurate.]
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3. Monotoniec damping

Requires
a’E|2<0
op
e:
(BAY) (BAD? e
[1_7(1_6)] S N1 R
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Development of the new scheme 1

Choosing R
nBAL

T+ npAt
with n > 1/2 satisfies all three constraints. This gives

Ft—i_At — Ft _ _é ! n nﬁAt Ft—FAt n 1 _ nﬁAt Ft
At 2 1 + nBAt 1 + nBAt

€

Works because:

e It dynamically keeps the off-centring parameter close to
zero for small damping coefficients

e But, as the damping increases, it asymptotes to fully im-
plicit off-centring.
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...ingeneral [ is an operator!

Can the scheme be written as a multi-step scheme?
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Development of the new scheme 2

Response function is
L+ (n—14) pae
|+ (n + %) BAL + n (BAL)?

Choosing n > /2 + 3/2 guarantees that n > 1/2 and the de-
nominator can be factorised in real space , and rewritten as

1 —(1—a—0b)BAL
(1+ aBAt) (1 + bBAL)
where a and b are the two roots of

9 1
y—-n+§ y+mn=>0.

E:
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Proposed scheme

Original scheme can then be written as

F* — Ft
== — F*
At af
) ool A
= (l—a—b)BF
t+At
F+ At_ F** _ —bﬁFt+At

l.e. as an implicit-explicit-implicit multi-step scheme.

As n increases for fixed (At, off-centring increases
fore choose n as small as permitted, i.e. n =+/2+3/2.

= a = b= 1+ 1/+/2 therefore optimising the symmetry.

©Crown Copyright 2007 12

. There-



Extension tothe nonlinear case 1

Extension based on Kalnay & Kanamitsu (1988) ’s generalised
damping equation:
dF

E:—(KFP>F+S

Result is two semi-implicit  steps:

X*— Xt 0 L OXH 0 L OXt]
= X X 1 —
At Il@z [K( ) 0z ] gl@z XS5 0z T -&)S
Xt—l—At _X* o i , aXt—i—At_ o , OX*
N b KX )& [’C(X) P ]+<ZQ — &) S
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Extension tothe nonlinear case 2

But! Need to estimate P to evaluate Z; (P), Zo(P), & (P) and
Ey (P)...

Parameter P characterises the nonlinearity of the problem

Empirically: P ~ 1/4 for unstable BLs; P ~ 2 for stable BLs

For P=2. 71 =20 ~5 & ~6,& ~3
ForP:1/4: T1=109o~2:E ~3;,E ~0

For details see Wood, Diamantakis & Staniforth (QJRMS 2007)
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Global Unified Model: 40km at midlatitudes: 70 levels: At = 15 mins.

At nd incr: bdy layer at 130.0 metre At nd incr: bdy layer at 130.0 metre
ot 0000 20/06/03 trom 1200 19/06/05 ot 0015 20/06/03 trom 1200 19/06/05

30s

60S —

- o ——— — . —
90S | | \ 90S | | |
90W 45W 90W 45W 0
-2 -1.5 =1 -0.5 0 0.5 0.5 0 0.5 1 1.5 2

Boundary-layer zonal wind increments at two successive
timesteps

Standard over-weighted scheme ( ¢ =2)
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Global Unified Model: 40km at midlatitudes: 70 levels: At = 15 mins.

At nd incr: bdy loyer at 76.67 metre At nd incr: bdy loyer ot 76.67 metre
ot 0000 20/06/03 tror 1200 18/06/05 ot 0015 20/06/03 trom 1200 18/06/05
0

Boundary-layer zonal wind increments at two successive
timesteps

New scheme ( P = 1/4 unstable; P = 2 stable)
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Global Unified Model: 40km at midlatitudes: 70 levels: At = 15 mins.

Standard scheme: physics timestep=15 min, epsilon=2

3[xwxwx[xwxwx[xmxwx[xwxwx[ 050[xxxwx[xxxxw[xwxwx[xwxwx{

0.25

0.00

-0.25

<u> zonal wind BL tendency*dt (m/s)
<T> temperature BL tendency*dt (K)

_3 1 ) I T 1 ) I T ' 1 I I T - 1 I I T - 1 _0-50 1 I I T - 1 111 1 1 1 I I T - 1 I I T - 1
12 18 0 6 12 12 18 0 6 12
Universal time (hours) Universal time (hours)

Timeseries of boundary-layer zonal wind and temperature
Increments

Standard over-weighted scheme ( ¢ =2)
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Global Unified Model: 40km at midlatitudes: 70 levels: At = 15 mins.

New scheme: physics timestep=15 min, P=2

3 oo rrr T T rrrr T rrrr T 050 T rrrr T rrrr T rrrr T rrrr T

0.25-

0.00|

-0.25!

<u> zonal wind BL tendency*dt (m/s)
<T> temperature BL tendency*dt (K)

[ [ [ | =050, . .., [ [ [ |
12 18 0 6 12 12 18 0 6 12
Universal time (hours) Universal time (hours)

Timeseries of boundary-layer zonal wind and temperature
Increments

New scheme ( P = 1/4 unstable; P = 2 stable)
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Conclusions

e New scheme developed that meets 4 identified criteria
e Extended to nonlinear case

e Diffusion coefficient frozen in time therefore cost is two 1D
tri-diagonal solutions - double that of traditional schemes,
but much cheaper than substepped schemes

e One free parameter, P = estimate of nonlinearity of diffu-
sion coefficient, depends on stability of boundary layer

e Good accuracy achieved by choosing only one value for
unstable and one value for stable boundary layers

(e-g- Punstable — 1/4; Pstable — 2)
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QUESTIONS?
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Extension tothe nonlinear case

Kalnay & Kanamitsu (1988) generalised damping equation:

ng (KFP ) F+S
Steady state is
g\ I/ (P+1)
= (3
K
Linearise about Fj:
/
dj; ~ (KE]) (F + PF)

with solution
F/ x e—ﬁ(l—FP)t

where g = KF}.
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Nonlinear aspects

Consider schemes with diffusion coefficient, KFP, evalu-
ated explicitly.

Discrete generalised equation is

Ft—FAt . Ft
A7 :—g {(1+e)Ft+At+(1—e)Ft—I—ZPFt}

with response function
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Satisfying the requirements

1. Unconditional stability: requires e > P
2. Second-order accuracy: requires ¢ = P + O (BAt)

3. Monotonic damping: requires

A
1—%(1—6—1—2P) %

> ()

1+ P+ BAtP (1 +4¢€) —
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Development of the nonlinear scheme 1

Choosing

e=P+(1+P) (11671%275)

with n > (1 + P) /2 satisfies all three constraints.

This gives the scheme as

Ft—l—At . Ft

At

__p nfAl t+At ~ npAt y
_ 2(1+P)K1+1+nﬁAt>F +(1 1+nﬁAt>F]

Note: for P = 0 (linear case) this reduces to previous scheme.
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Development of the nonlinear scheme 2

No longer want to factorise F.
Operating on F by  has the discrete response

BF — @ (F* + PFt)

Therefore need to factorise
FIHAL L pEL B4 P

E* = —
Ft+ PF? 1+ P

e
) BAt +nP (BAt)2

_|_
B 1+ (n PT) BAt +n (P + 1) (BAL)?
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Development of the nonlinear scheme 3

Viable scheme requires that E* can be written as

o (14 &1 BAL) (1 4+ EBAL)

(1 4+ Z18AL) (1 + ZoBAL)
with &1, &, Z; and Z, real.

This can be achieved by requiring that

n > (\/§+g> (P+1)>%
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Development of the nonlinear scheme 3

Again choose the smallest viable value for  n, I.e.
n=(V2+3/2) (P+1)

to give
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Proposed nonlinear scheme

The proposed, full non-linear scheme is therefore
™ — Ft t P *
- _—Il{[K(F)]F—S}
) i Nk , P §
v —51{[[((}7) ]F—S}
*kx  prkek P
it S { [K (F1) |- S}

At
Ft—i—At _ frREE ( P
— T, [K (Ft) FiHat _ g }

At

\

Including the source term S this way ensures the scheme re-
tains exact steady state and satisfies fourth requirement.
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An alternative form

...and finally...

Reduce scheme to two semi-implicit steps by combining each
explicit step with an implicit step:

For g [K (7)"] P 1 [K ()"

Ft—I—At _ F* P
N [K (Ft)

F'+ (1, —&)S

F*—l_(IQ — 52) S

Ft+At+52 [K (Ft)P

But! Need to estimate P to evaluate 7y, 7o, £ and &s...
Actual nonlinearity seems to be in range 0< P <2,
Choosing P ~ 3/2 seems to work well.
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