

Assimilation of Radar Derived Rain Rates into the Convective Scale Model COSMO-DE at DWD

(submitted to Quart. Journal of Royal Met. Soc.)

Klaus Stephan, Christoph Schraff, Stefan Klink

Deutscher Wetterdienst

klaus.stephan@dwd.de

Outline

- Looking back: good performance of latent heat nudging when applying a diagnostic precipitation scheme, esp. during assimilation
- Looking today: adaptation the latent heat nudging scheme to the requirements of the prognostic precipitation scheme to get even better results
- Looking out: further improvements of latent heat nudging are ongoing for both the data and the assimilation scheme

Diagnostic precipitation

Prognostic precipitation

Scheme to descripe the path of precipitation particles

$$t_{Ground} = t_{Cloud}$$
 $x_{Ground} = x_{Cloud}$

$$t_{Ground} = t_{Cloud} + \Delta t$$
 $x_{Ground} = x_{Cloud} + \Delta x$

How does it influence the latent heat nudging?

Brief Introduction of Latent Heat Nudging (LHN):

- → Approach to assimilate rain rates derived from radar measurements
- → Adding of temperature and moisture increments

latent heat release

temperatur increment (K/h)

BASIC ASSUMPTION of LHN:

Integral over latent heat release in a column is proportional to precipitation rate at ground

Correlation between model latent heat release (lines) and precipitation rate

Diagnostic precipitation

28

0.69

Prognostic precipitation

24h precipitation sum for 17.08.2006

Mean: 5.7 mm Mean: 5.6 mm Mean: 20.7 mm

LHN in combination with a prognostic precipitation scheme does overestimate the precipitation amount. Adaptations to the new requirements are necessary.

(R. A. Houze, Jr.: Cloud Dynamics, International Geophysics Series Vol. 53)

Reasons and Revisions

Correlation is lower and can be even negative

- Time of precipitation formation and outfall are different (no feedback to LHN)
- → Latent heat rates are much higher than for diagn. precipitation scheme

- Use a Reference Precipitation
- Treat only layers with positive latent heat rates
- Use a Reference Precipitation
- Revision of all LHN modules (i.e. grid point searching)
- Reduce intensity of LHN (control parameters)

(R. A. Houze, Jr.: Cloud Dynamics, International Geophysics Series Vol. 53)

Correlation between model latent heat release and reference precipitation

Prognostic precipitation (original LHN scheme)

Prognostic precipitation (revised LHN scheme)

24h precipitation sum for 17.08.2006

Diagn. Precipitation

Progn. Precipitation (orig. LHN-scheme)

Progn. Precipitation (revised LHN scheme

Mean: 5.6 mm Mean: 20.7 mm Mean: 6.0 mm

Spatial mean of hourly precipitation (within Radar domain) 4 days in August 2006

Mean skill scores over 32 forecast (00 and 12 UTC) AUGUST 2006

Threshold 0.1 mm/h

Summary of the revisions

- → LHN was operating well during assimilation with diagnostic precipitation scheme but went worse when changing to prognostic precipitation scheme
- → Reasons: Violation of basic assumption and lack of feedback
- → Revision of LHN scheme restores the validity of the basic assumption and does improve the assimilation and free forecast to even better results than before
- → The important revisions are:
 - Introduction of a Reverence Precipitation
 - considering of only positive latent heating rates
 - Improvement of grid point search module

Looking Today:

- Several changes of COMSO-DE took place since start of (pre)operational mode
- → Changes in microphysics required further revisions of the LHN scheme
 - → Refinement of definition the reference precipitation
 - → Improvement of grid point search module
- → What the benefit of LHN in the current setup compared to assimilation without LHN of radar information?

Mean skill scores over 32 forecast (00 and 12 UTC) AUGUST 2006

Outlook

- Assimilation Scheme:
 - → Increasing the duration of forecast benefit
 - Investigation of balances constrains and local environment
 - → Inclusion of radar beam height
 - → Definition of reference precipitation
 - Vertical distribution of increments
- Data sources
 - Extension the radar domain to the entire model domain
 - → Improving quality check, i.e. bright band detection
 - Complete volume scan with quality information
 - → Using Radial wind information

Thank you for your attention

